Operation and Maintenance Manual

Cummins Automotive Diesel Engines

IMPORTANT REFERENCE NUMBERS

CHASSIS SERIAL NO.______________________________
ENGINE MODEL_______________________________
ENGINE SERIAL NO.____________________________
FUEL FILTER NO._______________________________
FULL FLOW LUBRICATING FILTER ELEMENT NO.___
BY-PASS FILTER ELEMENT NO.__________________
WATER FILTER ELEMENT NO.____________________
AIR CLEANER ELEMENT NO.____________________
WATER PUMP BELT NO._________________________
FAN BELT NO._______________________________
ALTERNATOR BELT NO.________________________
POWER STEERING PUMP BELT NO.________________
Foreword

The information contained in this publication pertains to Cummins Inline and V6-V8 Diesel Engines used in automotive applications. Operation and maintenance procedures are detailed so a new or experienced engine owner, operator or serviceman can use the information to obtain the best service from the engine.

For model identification of an engine, check the Data or Serial No. Plate, the letter and number code indicates breathing (naturally aspirated except when letter “T” for turbocharged is present), cubic inch displacement, application and maximum rated horsepower.

Examples:
NTA · 370
N = 4 valve head
T = Turbocharged
A = Aftercooled
370 = Maximum rated horsepower

V903 · 320
V = Type engine
903 = Cubic Inch Displacement
320 = Maximum rated horsepower

Table: Other Application Designations

* Automotive (On-highway)
B Off - Highway (Usually less compressor)
C Construction (Construction Industry)
G Generator Set
P Power Units (Various Components used.)
M Marine
D Dump or Mixer Application

*Refer to Table on Page 4 for Automotive Engines Horsepower Specifications.

Your Cummins Diesel Engine has been built by Cummins to comply with the requirements of the Federal (U.S.) Clean Air Act. Proper Maintenance of the Engine, which is your responsibility, is essential to keep emission levels low. Section 2, Maintenance Operations, of this manual sets forth the maintenance schedule which you should follow.

To prove that you have properly maintained the Engine you should retain records, such as work orders and receipts, showing that scheduled maintenance has been performed.

Cummins Engine Company, Inc.
Columbus, Indiana, U.S.A.

This is an operation and maintenance manual; repair operations should be performed by specially trained personnel. Trained personnel are available at all Cummins Distributor and Dealer locations to perform full repair.
Table of Contents

Operating Instructions

General — All Applications 1-1
New Engine Break-In .. 1-1
Prestarting Instructions 1-1
Starting The Engine .. 1-2
Engine Warm-Up .. 1-5
Engine Speeds .. 1-5
Instrument Panels .. 1-6
Engine Exhaust ... 1-7
Maximum Horsepower Requirements 1-7
Auxiliary Braking Systems 1-8
High Altitude Operation 1-8
Engine Shutdown .. 1-8
Cold Weather Protection 1-9
Operator’s Daily Report 1-10

Maintenance Operations

Schedule ... 2-1
Check Sheet .. 2-2
Storage For Engine Out of Service 2-3
Maintenance Performance Record 2-3
A Checks ... 2-4
B Checks ... 2-6
C Checks ... 2-21
D Checks ... 2-35
E Checks ... 2-37
Other Maintenance Checks 2-38

Specifications and Torque

Lubricating Oil ... 3-1
Grease ... 3-3
Fuel Oil ... 3-4
Coolant ... 3-5
Torque Specifications 3-6

Trouble Shooting

Description .. 4-1
Chart ... 4-2

Operating Principles

Cummins Diesel Cycle 5-1
Fuel System ... 5-2
Lubricating System ... 5-10

Operating Principles (Cont’d.)

Cooling System .. 5-15
Air System ... 5-16

Index

Table 1: Automotive Model Specifications

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>HP @ RPM *</th>
<th>HP @ RPM</th>
<th>Aspiration</th>
<th>No. Cyl.</th>
<th>Bore and Stroke</th>
<th>Displacement Cu. In.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sea Level/60 deg F</td>
<td>500/85 deg F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH-230</td>
<td>230 @ 2100</td>
<td>220 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NH-250</td>
<td>250 @ 2100</td>
<td>240 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>Super-250</td>
<td>250 @ 2100</td>
<td>240 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6-1/2</td>
<td>927</td>
</tr>
<tr>
<td>NTC-290</td>
<td>290 @ 2100</td>
<td>290 @ 2100</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTC-335</td>
<td>335 @ 2100</td>
<td>335 @ 2100</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTC-350</td>
<td>350 @ 2100</td>
<td>350 @ 2100</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTA-370</td>
<td>370 @ 2100</td>
<td>370 @ 2100</td>
<td>Turbocharged, Aftercooled</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>V-903</td>
<td>320 @ 2600</td>
<td>307 @ 2600</td>
<td>Natural</td>
<td>8</td>
<td>5-1/2 x 4-3/4</td>
<td>903</td>
</tr>
<tr>
<td>VT-903</td>
<td>320 @ 2600</td>
<td>320 @ 2600</td>
<td>Turbocharged</td>
<td>8</td>
<td>5-1/2 x 4-3/4</td>
<td>903</td>
</tr>
<tr>
<td>Medium Duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6-155</td>
<td>155 @ 3300</td>
<td>149 @ 3300</td>
<td>Natural</td>
<td>6</td>
<td>4-5/8 x 3-3/4</td>
<td>378</td>
</tr>
<tr>
<td>V-210</td>
<td>210 @ 3300</td>
<td>202 @ 3300</td>
<td>Natural</td>
<td>8</td>
<td>4-5/8 x 3-3/4</td>
<td>504</td>
</tr>
<tr>
<td>V-555E</td>
<td>210 @ 3300</td>
<td>202 @ 3300</td>
<td>Natural</td>
<td>8</td>
<td>4-5/8 x 4-1/8</td>
<td>555</td>
</tr>
<tr>
<td>V-555</td>
<td>225 @ 3300</td>
<td>216 @ 3300</td>
<td>Natural</td>
<td>8</td>
<td>4-5/8 x 4-1/8</td>
<td>555</td>
</tr>
<tr>
<td>V-555</td>
<td>240 @ 3300</td>
<td>230 @ 3300</td>
<td>Natural</td>
<td>8</td>
<td>4-5/8 x 4-1/8</td>
<td>555</td>
</tr>
<tr>
<td>Special Duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-180</td>
<td>180 @ 2500</td>
<td>173 @ 2500</td>
<td>Supercharged</td>
<td>6</td>
<td>4-7/16 x 5</td>
<td>464</td>
</tr>
<tr>
<td>C-190**</td>
<td>190 @ 2500</td>
<td>190 @ 2500</td>
<td>Turbocharged</td>
<td>6</td>
<td>4-7/16 x 5</td>
<td>464</td>
</tr>
<tr>
<td>NHD-230**</td>
<td>230 @ 2100</td>
<td>220 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>Power Torque 270</td>
<td>270 @ 2100</td>
<td>270 @ 2100</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NHF-240**</td>
<td>240 @ 2300</td>
<td>230 @ 2300</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NHF-295**</td>
<td>265 @ 2300</td>
<td>255 @ 2300</td>
<td>Natural</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTF-365**</td>
<td>295 @ 2300</td>
<td>295 @ 2300</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTA-400**</td>
<td>365 @ 2300</td>
<td>365 @ 2300</td>
<td>Turbocharged</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NTA-420**</td>
<td>400 @ 2100</td>
<td>400 @ 2100</td>
<td>Turbocharged, Aftercooled</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>NHH-250 80° Tilt**</td>
<td>420 @ 2300</td>
<td>420 @ 2300</td>
<td>Turbocharged, Aftercooled</td>
<td>6</td>
<td>5-1/2 x 6</td>
<td>855</td>
</tr>
<tr>
<td>Shotts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHK-205 †</td>
<td>197 @ 2100</td>
<td>197 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/8 x 6</td>
<td>743</td>
</tr>
<tr>
<td>NHK-220 †</td>
<td>212 @ 2100</td>
<td>212 @ 2100</td>
<td>Natural</td>
<td>6</td>
<td>5-1/8 x 6</td>
<td>743</td>
</tr>
</tbody>
</table>

Note: K designates right hand drive models to be sold only in the United Kingdom.

* Horsepower stated is derived by adjusting SAE standard J816A rating of naturally aspirated engines by 4 percent to indicate approximate performance at sea level and 60 deg. F (16 deg. C) intake air temperature, assuming an adjustment to fuel rate to maintain same fuel: air ratio as SAE rating.

** C-190 is designed for transit-mix and dump trucks, NHD-230 is designed for transit-mix, dump trucks, and drill rigs, “F” engines are designed for fire trucks and crane carriers, NTA-400 is designed for off-highway logging applications and crane carriers, NHH-250 80° deg. tilt engine is designed for use in buses.

† NHK-205 and NHK-220 are smoke certified only for the U.K., to BS AU141a 1971 British Standard. Other engines built at the Shotts, Scotland plant to U.S. design standards carry the U.S.A, smoke certification.

Naturally aspirated engines, permanently stationed at altitude, should be derated 3% by fuel rate adjustment for each 1000 feet [304.8 m] above 500 feet [152.4 m] and 1% for each 10 deg. F [6 deg. C] above 85 deg. F [29 deg. C] temperature.

Turbocharged engines may be operated to altitudes specified on engine performance curves without changing fuel rate.
TO THE ENGINE OWNER

All new Cummins Engines should be made available to a Cummins Distributor or Dealer at the first "B" interval as specified in the Maintenance Schedule, Page 2-2 or 90 days of operation, whichever occurs first, who are authorized to perform new engine inspection to assure proper engine performance.

When a Cummins engine is shipped from the factory, a detachable engine inspection tag is a part of the engine data plate. This tag is 1-1/4 inch long and has the engine model and serial number stamped on it. This tag is not to be removed from the nameplate until the new engine inspection is performed as Cummins Engine Company, Inc. may not honor an inspection claim unless this tag accompanies the report of new engine inspection when submitted by the inspecting Dealer or Distributor. If this inspection tag is missing prior to the new engine inspection, please notify the Dealer/Distributor from which the engine was purchased.

New engine inspection check list consists of the following:

1. CHECK BEFORE STARTING ENGINE
 Engine and Accessory Mountings for Fuel, Lubricating Oil, and Coolant Leakage
 Fuel System Installation
 Lubricating Oil System Installation, Lubricating Oil Level, and Oil Pan Drain Plug Torque
 Cooling System Installation and Coolant Level
 Air Cleaner
 Engine Breather
 All Belt Tension

2. CHECK WHILE OPERATING ENGINE
 For Unusual Noises
 Throttle Operation
 Fuel, Lubricating Oil, Coolant Leakage
 Operation of Gauges and Controls
 Lubricating Oil Pressure
 Engine Performance

3. Adjustments
 Injectors
 Crossheads
 Valves

4. INSTRUCT OWNER IN
 Changing Fuel and Lubricating Oil Filters
 Changing Lubricating Oil
 Use of Proper Fuel Oil
 Operating Temperature
 Starting and Stopping Procedure
 Damages Caused By Over-Speeding
 Use of Corrosion Inhibitor and Antifreeze
 Use of Cold Starting Device
 Air Cleaner Maintenance
 Belt Maintenance
Operating Instructions

Automotive Engines

New And Rebuilt Engine Break-In

Cummins engines are run-in on dynamometers before being shipped from the factory and are ready to be put to work in applications such as emergency fire trucks.

In other applications, the engine can be put to work, but the operator has an opportunity to establish conditions for optimum service life during initial 100 hours or 3000 mi. [4827 km] of service by:

1. Operating as much as possible in half to three-quarter throttle or load range.

2. Avoiding operation for long periods at engine idle speeds, or at maximum horsepower levels in excess of five minutes.

3. Developing the habit of watching engine instruments closely during operation and letting up on throttle if oil temperature reaches 250 deg. F [121 deg. C] or coolant temperature exceeds 190 deg. F [88 deg. C].

4. Operating with a power requirement that allows acceleration to governed speed when conditions require more power.

5. Checking oil level at each 300 mi. [483 km] or 10 hours during the break-in period.

Pre-Starting Instructions — First Time

Priming The Fuel System

1. Fill fuel filter with clean No. 2 diesel fuel oil meeting the specifications outlined in Section 3.
 a. With PT (type G) fuel pump, fill pump through plug next to tachometer with clean fuel.
 b. With PT (type R) fuel pump, remove suction line and wet gear pump gears with clean fuel.

2. Check and fill fuel tanks,

3. If injector and valve or other adjustments have been disturbed by any maintenance work, check to be sure they have been properly adjusted before starting the engine.

Priming The Lubricating System

Note: On turbocharged engines, remove oil inlet line from the turbocharger and fill bearing housing with clean lubricating oil. Reconnect oil supply line.

1. Fill crankcase to “L” (low) mark on dipstick. See Lubricating Oil Specifications, Section 3.

2. Remove plug from head of lubricating oil filter housing (Fig’s. 1-1 and 1-2) or gear case cover to prime system.

Caution: Do not prime engine lubricating system from by-pass filter.

3. Connect a hand- or motor-driven priming pump line from source of clean lubricating oil (see Section 3) to plug boss in housing.

Fig. 1-1, (N11963). Lubricating system priming point - inline engine
4. Prime until a 30 psi [2.1 kg/sq cm] minimum pressure is obtained.

5. Crank engine at least 15 seconds (with fuel shut-off valve closed or disconnected to prevent starting), while maintaining external oil pressure at a minimum of 15 psi [1.1 kg/sq cm].

6. Remove external oil supply line and replace plug in lubricating oil filter housing, torque 15 to 20 ft-lbs [2.1 to 2.8 kg m].

Caution: Clean area of any lubricating oil spilled while priming or filling crankcase.

7. Fill crankcase to “H” (high) mark on dipstick with oil meeting specifications, listed in Section 3. No change in oil viscosity or type is needed for new or newly rebuilt engines.

A dipstick oil gauge is located on the side of the engine. Fig. 1-3. The dipstick has an “H” (high) (1) and “L” (low) (2) level mark to indicate lubricating oil supply. The dipstick must be kept with the oil pan, or engine, with which it was originally supplied. Cummins oil pans differ in capacity with different type installations and oil pan part numbers.

Check Air Connections

Check air connections to compressor and air equipment, as used, and to air cleaners and air crossovers.

Check Engine Coolant Supply

1. Remove radiator cap and check engine coolant supply. Add coolant as needed to completely fill system. See Section 3 for coolant specifications.

2. Make visual check for leaks and open corrosion resistor shut-off valves.

Check Fuel Supply And Connections

Caution: Fuel leaks may create a fire hazard if not corrected.

Visually check for evidence of external fuel leakage at fuel connections.

Starting The Engine

Starting requires only that clean air and fuel be supplied to the combustion chamber in proper quantities at the correct time.

Caution: Protect the turbocharger during the start-up by not opening throttle or accelerating above 1000 RPM until normal engine idle speed oil pressure registers on gauge.

Normal Starting Procedure

If fuel system is equipped with overspeed stop, push “Reset” button before attempting to start engine.

Caution: Before starting, check to make sure everyone is clear of engine and equipment, to prevent accidents.

1. Set throttle for idle speed.

2. Disengage driven unit or make sure gears are in neutral.

3. Open manual fuel shut-down valve, if engine is so equipped. Electric shut-down valves operate as switch is turned on.

4. Pull the compression release (if so equipped).

5. Press starter button or turn switch-key to “start”
position.

Note: A manual override knob provided on the forward end of the electric shut-down valve allows the valve to be opened in case of electric power failure. To use, open by turning fully clockwise; return to run position after electric repair.

Caution: To prevent permanent cranking motor damage, do not crank engine for more than 30 seconds continuously. If engine does not fire within first 30 seconds, wait one to two minutes before recranking.

6. After three or four seconds of cranking, close the compression release (if so equipped) and continue to crank until the engine fires.

Caution: After engine has run for a few minutes, shut it down and wait 15 minutes for oil to drain back into pan. Check engine oil level again; add oil as necessary to bring oil level to "H" mark on dipstick. The drop in oil level is due to absorption by the oil filter and filling of the oil cooler. Never operate the engine with oil level below the low level mark (2), or above the high level mark (1).

Cold-Weather Starting

To aid in starting engine when temperature is 50 deg, F [10 deg, C] or below, an intake air preheater is available. Preheater equipment consists of a hand-priming pump to pump fuel into intake manifold, a glow plug which is electrically heated by battery and a switch to turn on glow plug. Fuel burns in the intake manifold and heats intake air. See Fig's, 1-4 and 1-5.

Caution: Do not use ether in conjunction with the preheater. To do so could result in a fire.

To use the preheater for cold starting:

1. Set throttle in idle position. Do not accelerate engine during the starting procedure.

2. Turn glow plug toggle switch to "ON" position. Red indicator light must be on.

3. After red light has been on for 20 seconds, start cranking the engine. As soon as engine begins rotating, operate the preheater priming pump to maintain 80 to 100 psi [5.6 to 7 kg/sq cm] fuel pressure. Use of primer before the 20-second interval will wet glow plug and prevent heating.

Note: On engines equipped with an oil pressure safety switch, the fuel by-pass switch must be in "start" position before operating priming pump. Hold the fuel by-pass switch in "start" position until engine oil pressure reaches 7 to 10 psi [0.5 to 0.7 kg/sq cm]; then, move to "run" position.

4. If engine does not start within 30 seconds, stop cranking. Wait one to two minutes and repeat cranking operation.

5. After engine starts, pump primer slowly to keep engine idling smoothly. In cold weather this may require 4 to 5 minutes or longer. Do not accelerate engine.

6. When the engine has warmed up so it does not falter between primer strokes, stop pumping. Close and lock primer. Turn off glow plug toggle switch. (Red indicator light will go out.)

Failure To Start

1. If the engine gives no indication of starting during the first three full strokes of the preheater pump, touch-check the intake manifold for heat. If there is no heat, check electric wiring. If wiring is all right, remove 1/8 inch pipe plug (1, Fig. 1-5) from manifold near glow plug and carefully check for flame while a helper performs the preceding Steps 2, 3 and 4.
2. If no flame is observed, close glow plug manual switch for 15 seconds and observe glow plug through 1/8 inch pipe plug hole. The glow plug should be white hot; if not, connect wiring to a 6- or 12-volt (as used) source and check amperage; it should be 30 to 32 (minimum). If glow plug is all right, check manual switch and resistor (if used) and replace if necessary.

Ether-Compound Metering Equipment

This consists of a metering chamber for ether compound capsules and controls to release the starting compound during cranking.

The metering chamber is installed to release the starting fluid between the air cleaner and the turbocharger on engines so equipped. On naturally aspirated engines, the metering chamber releases the ether fluid into air intake manifold. To start engines equipped with this cold-starting aid:

1. Close shut-off cock (1, Fig. 1-6). If properly installed, the spring will hold it closed.

2. Remove cap (2) and insert capsule of starting fluid.

3. Push cap down sharply to puncture capsule and tighten one-fourth turn.

4. Wait 30 seconds before engaging starter.

5. Engage starter and, while engine is being cranked, open the shut-off valve.

Caution: Do not open valve before cranking or there will be one excessively heavy charge instead of the metered amounts which starting requires.

6. After engine has started and all fluid has drained out of chamber, close the valve to prevent entry of dusty air into the engine.

7. Remove and discard empty capsule, and reassemble empty primer.

Spray Nozzle Application Of Starting Fluid

Spray nozzle application is an effective aid in starting engine when temperatures drop below 50 deg. F [10 deg. C]. This cold-starting fluid should never be used with any type preheater system. Serious damage could result.

Spray nozzle assembly consists of a control knob operated from cab, a flexible cable and cable housing attached to container, bracket mounted on fire wall (1, Fig. 1-7). Pulling knob, in cab, releases spray through a small plastic hose (2) into spray nozzle (3) located in intake crossover connection or air intake manifold. Small orifice holes in spray nozzle must be positioned to allow fluid to spray into both left bank and right bank intake manifolds of V type engines.

Caution: When pulling knob, do not hold knob any longer than 2 seconds at any one time. Serious damage could result from releasing excessive fluid into intake chambers.

If engine does not start after first 2 seconds of spray application, wait 1 or 2 minutes and repeat starting procedure. In extreme cold weather conditions, such as −25 deg. F [−32 deg. C], if unit will not start with above instructions, remove starting fluid can and warm to room temperature; check spray nozzle in intake connection to be sure orifice holes are free of foreign material. Install can in bracket and connect spray nozzle and repeat normal starting procedure with use of spray nozzle.
Use Of Ether Without Metering Equipment

If the engine is not equipped with a preheater arrangement or ether compound metering equipment, two men can use the following method to start the engine.

1. Spray ether into air cleaner intake, Fig. 1-8, while second man cranks the engine.

 Caution: Never handle ether near an open flame. Never use it with preheater or flame thrower equipment. Do not breathe the fumes. Use of too much ether will cause excessively high pressures and detonation.

2. Ether fumes will be drawn into the intake air manifold and the cold engine should start without difficulty.

![Ether spray application](image)

Fig. 1-8. (N11807). Ether spray application

Engine Warm-Up

When the engine is started, it takes a while to get the lubricating oil film re-established between shafts and bearings and between pistons and liners. The most favorable clearances between moving parts are obtained only after all engine parts reach normal operating temperature.

Avoid seizing pistons in liners and running dry shafts in dry bearings by bringing the engine up to operating speed gradually as it warms up. Allow the engine to run at 800 to 1000 rpm for 4 to 5 minutes or preferably until water temperature reaches 140 deg. F (60 deg. C) before engaging the load. During the next 10 to 15 minutes, or until water temperature reaches 160 to 165 deg. F (71 to 74 deg. C), operate at partial load at approximately 75% of governed rpm.

On some emergency equipment (such as fire engines) warm-up may not be necessary due to equipment being housed inside a heated building.

Engine Speeds

Idle Speeds

In most applications engine idle speeds are 580 to 650 rpm; however, the parasitic load may require a slightly higher value to smooth out operation.

Caution: Cummins Engine Company, Inc., recommends idling turbocharged engines three (3) minutes minimum before applying load to obtain adequate oil flow through turbocharger.

Governed Speeds

All Cummins engines are equipped with governors to prevent speeds in excess of maximum or predetermined lower speed rating, except when pushed by load downhill, etc.

The governor has two functions: First, it provides the exact amount of fuel needed for idling when the throttle is in idling position. Second, it overrides the throttle and shuts off fuel if engine rpm exceeds the maximum rated speed.

Speeds listed in Table 1-1 are for engines rated at maximum rpm and fuel rate; many engines are set at other values due to equipment being powered or loads applied to equipment and engine.

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>Rated RPM</th>
<th>Cruising RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All NH-NT</td>
<td>1950</td>
<td>1800-1900</td>
</tr>
<tr>
<td>All NH-NT (except CT)</td>
<td>2100</td>
<td>1900-2000</td>
</tr>
<tr>
<td>Power Torque 270</td>
<td>2100</td>
<td>1600-2000</td>
</tr>
<tr>
<td>Super-250</td>
<td>2100</td>
<td>1900-2000</td>
</tr>
<tr>
<td>V-903, VT-903</td>
<td>2300</td>
<td>1950-2100</td>
</tr>
<tr>
<td>V-378, V-504, V-555</td>
<td>2600</td>
<td>2200-2300</td>
</tr>
<tr>
<td>V-378, V-504, V-555</td>
<td>3000</td>
<td>2500-2550</td>
</tr>
<tr>
<td>C</td>
<td>3300</td>
<td>2800-2850</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>2150-2250</td>
</tr>
</tbody>
</table>

Operate At Reduced RPM For Efficiency

When operating a truck on a level highway, hold engine rpm at approximately 90 percent (80 percent for Custom-Torque Engines) of governed rpm. See Table 1-1. This will give adequate power and economical fuel mileage.

Most automotive operations will fall in this speed range. The engine will be operating in the easy shift range and will not be working hard.

Many trucks are geared for higher maximum road speeds than schedules require; so drivers can operate in high gear and at reduced engine rpm. This is good practice as long as the engine pulls its load at partial throttle.
Instrument Panels

The instruments show at all times how to get the most satisfactory service from any engine.

Use The Tachometer

Rated engine speed is the rpm attained at full load. Governed engine speed is the highest rpm a properly adjusted governor will allow the engine to turn, no load. Governed engine speed must never be exceeded on downgrades or any other condition in which the load drives the engine.

Fig. 1-9, (V61930). Typical automotive instrument panel

Operate at partial throttle in continuous-duty situations to give required torque with the tachometer showing rpm approximately 15 percent below governed speed.

Oil Temperature Gauge Indicates
Best Operating Range

Caution: Any sudden increase in oil temperature which is not caused by load increase is a warning of possible mechanical failure and should be investigated at once.

During warm-up period, apply load gradually until oil temperature reaches 140 deg. F [60 deg. C]. While oil is cold it does not do a good job of lubricating. Continuous operation with oil temperatures much below 140 deg. F [60 deg. C] increases likelihood of crankcase dilution and acids in the lubricating oil which quickly accelerates engine wear.

Water Temperature

A water temperature of 165 to 195 deg. F [74 to 91 deg. C] is the best assurance that cylinder liners are heated to the proper temperature to support good combustion and that working parts of the engine have expanded evenly to the most favorable oil clearances. See "Engine Warm-Up."

When water temperature is too low, the cylinder walls retard heating of air during compression and delay ignition. This causes incomplete combustion, detonation, excessive exhaust smoke and high fuel consumption.

Overheating problems require mechanical correction. It may be caused by loose water pump belts, a clogged cooling system, or insufficient radiator capacity. Report cases of overheating to the Maintenance Department for correction; 200 deg. F [93 deg. C] maximum engine coolant temperature should not be exceeded.

Keep thermostats in the engine summer and winter, avoid long periods of idling, and take necessary steps to keep water temperatures up to a minimum of 165 deg. F [74 deg. C]. If necessary in cold weather, use radiator shutters or cover a part of the radiator to prevent overcooling. (Refer to "Cold-Weather Operation."

Oil Pressure Gauge

The oil pressure gauge indicates any drop in lubricating oil pressure or mechanical malfunction in the lubricating oil system. The operator should note loss of oil pressure immediately and shut down the engine before the bearings are ruined.

Normal Operating Pressures at 225 deg. F [107 deg. C] are:

Table 1-2: Oil Pressure PSI [kg/sq cm]

<table>
<thead>
<tr>
<th>Engine Series</th>
<th>Idle Speed</th>
<th>Rated Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-NT, Super-250</td>
<td>5/20 [0.4/1.7]</td>
<td>40/75 [2.8/5.3]</td>
</tr>
<tr>
<td>C</td>
<td>10/30 [0.7/2.1]</td>
<td>40/75 [2.8/5.3]</td>
</tr>
<tr>
<td>V-903, VT-903</td>
<td>5/25 [0.4/1.8]</td>
<td>40/65 [2.3/4.6]</td>
</tr>
<tr>
<td>V-378, V-504, V-555</td>
<td>10/25 [0.7/1.8]</td>
<td>45/75 [3.2/5.3]</td>
</tr>
</tbody>
</table>

For record purposes these readings are more accurate and reliable when taken immediately after an oil change.

Note: Individual engines may vary from above normal pressures. Observe and record pressures when engine is new to serve as a guide for indication of progressive engine condition. (High oil pressure during start-up is not cause for alarm).
Engine Exhaust

The engine exhaust is a good indicator of engine operation and performance. A smoky exhaust may be due to a poor grade of fuel, dirty air cleaner, overfueling, or poor mechanical conditions.

If engine exhaust is smoky, corrective action should be taken.

Attention Operator

Your Cummins Diesel Engine has been built by Cummins to comply with the requirements of the Federal (U.S.) Clean Air Act. Proper Maintenance of the Engine, which is your responsibility, is essential to keep emission levels low.

Once the engine is placed in service the responsibility for meeting state and local regulations must necessarily be with the owner/operator.

Observation of good operating practices, regular maintenance and proper adjustments are factors which will help stay within the regulations.

Maximum Horsepower Requirements

Maximum horsepower is attained only at rated engine rpm. Whenever engine rpm is pulled down by overload, horsepower is lost and continues to be lost as long as the engine continues to lose rpm. When full horsepower is needed, operate engine as near rated rpm as possible.* This rule applies to all applications (except High-Torque Engines).

One rule sums up all rules for proper operation to give the power needed and best performance from the equipment: Always operate so power requirement will allow the engine to accelerate to, or maintain, governed rpm when advancing to full throttle.

When more power is required, bring engine speed near the governor. This will produce the additional horsepower needed.

Shift To A Lower Gear When The Load Pulls Down Engine RPM

The practice of shifting gears — next to safety observance — is a most important phase of good engine operation.

The shift point differs from unit to unit depending upon engine rated speed, torque peak point, and transmission or gear splits available; therefore, it is not always possible to state exactly at which speed to shift unless all the variables are known. A good rule is “shift down at the same engine speed the tachometer indicated immediately after shifting up.”

As one example, run to the governor (engine rated speed) in fourth gear, then shift to fifth gear. The engine speed falls to 1700 rpm, which indicates the ratio difference between these two gears. Likewise, when pulling up a hill in fifth gear, shift to fourth when the engine speed pulls down to 1700 rpm. The engine will increase to governed speed in fourth, and the increased horsepower acting through the lower ratio of fourth gear will allow the engine to pull the grade.

On a steep grade, start down-shift before the engine actually pulls down to shifting speed, because the truck will lose speed while shifting gears.

Failure to shift down at the right time, or a delayed down-shift, will result in the engine failing to reach full power, and make another down-shift necessary.

When approaching a hill, open throttle smoothly to start the up-grade at full power, then shift down as soon as the engine has dropped to shifting speed. Do not wait until the engine is below shifting speed. Less gear shifts will be required and average road speed will be higher if this is done smoothly. Custom Torque Engines will require fewer gear shifts, due to higher torque at lower rpm. Through driving experience, one will learn when down-shifting is required.

Downhill Operation

The Cummins Diesel is effective as a brake on downhill grades, but care must be exercised not to overspeed the engine going downhill. The governor has no control over engine speed when it is being pushed by the loaded vehicle.
Use Brake As Needed To Prevent Excessive Engine Speeds

Use a combination of brakes and gears to keep vehicle under control at all times, and to keep engine speed below rated governed rpm.

Auxiliary Braking Systems

Some trucks are equipped with auxiliary braking equipment which utilize the engine as a braking device to reduce wear on the normal truck brake system. Operation of the units is relatively simple; however, correct adjustment is very important to prevent damage to the engine; check with a Cummins Distributor for any necessary adjustments before using auxiliary braking system.

Cummins Engine Company, Inc. warranty does not cover engine damage resulting from use of auxiliary braking systems since such damage can be caused by improper application, lack of maintenance, incorrect use or malfunction of such brakes.

Exhaust Brake

So called because closing of a valve in the exhaust system retains compression pressures within the exhaust manifolding and engine cylinders to utilize these pressures to reduce speed. Compression braking is most efficient when engine is permitted to turn at same speeds as for efficient power and may be used as much and as often as possible.

Jacobs Engine Brake

This braking system converts the engine into a power absorber using air compressor using a master slave piston arrangement to open engine exhaust valves near top of engine compression stroke releasing pressures to exhaust. The effect being a net energy loss since work done during compression is not returned during the expansion process.

The operator selects a gear which will provide a balance between engine speed and road speed, If engine exceeds maximum rated rpm for a designed road speed, a lower gear can be selected, or intermittent use can be made of vehicle service brakes. Selection of a lower gear will generally allow complete control of vehicle by the brake leaving the service brakes in reserve for emergency stops.

High Altitude Operation

Engines lose horsepower when operated at high altitude because the air is too thin to burn as much fuel as at sea level. This loss is about 3 percent for each 1000 ft. [304.8 m] altitude above sea level for a naturally aspirated engine. Most turbocharged engines are rated at higher altitudes than naturally aspirated engines. (See Engine Specification

Tables at front of this manual.) An engine will have a smoky exhaust at high altitude unless a lower gear is used so the engine will not demand full-fuel from the fuel system unless the engine is altitude compensated by the use of a turbocharger. Smoke wastes fuel, burns valves and exhaust manifolds, and "carbons up" piston rings and injector spray holes. Shift gears as needed to avoid exhaust smoke.

Power Take-Off Applications With SVS Governor PT (type G) Fuel Pump

1. The SVS governor lever is used to change governed speed of engine from automotive rated speed to an intermediate power take-off speed.

2. Engine will not idle if SVS lever is in power take-off speed position and automotive throttle is in idle position. Operate as follows:
 a. For PTO operation, bring engine to idle speed.
 b. Set automotive throttle 600 to 800 rpm above idle.
 c. Hold automotive throttle in above position and shift SVS governor lever to low speed or power take-off position.
 d. Slowly close automotive throttle until speed of power take-off engagement is reached, engage power take-off,
 e. Open automotive throttle to full open and control unit with SVS governor lever.

3. To return to automotive throttle control:
 a. Use automotive throttle and decrease engine speed until power take-off may be disengaged.
 b. Disengage power take-off and shift SVS governor lever to high-speed position.
 c. Return automotive throttle to idle position and resume operation of unit as an automotive vehicle.

Caution: Never return automotive throttle to idle position while SVS governor lever is in low speed or power take-off position or engine will fail to idle properly.

4. SVS governor should not be used with power take-off speeds lower than 1100 rpm; for these applications use MVS governor, described in Section 5, "Operating Principles."

Engine Shut-Down

Idle Engine A Few Minutes Before Shut-Down

It is important to idle an engine 3 to 5 minutes before shutting it down to allow lubricating oil and water to carry heat away from the combustion chamber, bearings, shafts, etc. This is especially important with turbocharged engines.
The turbocharger contains bearings and seals that are subject to the high heat of combustion exhaust gases. While the engine is running, this heat is carried away by oil circulation, but if the engine is stopped suddenly, the turbocharger temperature may rise as much as 100 deg. F [47 deg. C]. The results of extreme heat may be seized bearings or loose oil seals.

Do Not Idle Engine For Excessively Long Periods

Long periods of idling are not good for an engine because operating temperatures drop so low the fuel may not burn completely. This will cause carbon to clog the injector spray holes and piston rings.

If engine coolant temperature becomes too low, raw fuel will wash lubricating oil off cylinder walls and dilute crankcase oil so all moving parts of the engine will suffer from poor lubrication.

If the engine is not being used, shut it down.

Turn Switch Key To “Off” Position To Shut Down The Engine

The engine can be shut down completely by turning off the switch key on installations equipped with an electric shut-down valve, or by turning the manual shut-down valve lever. Turning off the switch key which controls the electric shut-down valves always stops the engine unless override button on shut-down valve has been locked in open position. If manual override on electric shut-down valve is being used, turn button full counterclockwise to stop engine. Refer to “Normal Starting Procedure,” Page 1-2. Valve cannot be reopened by switch key until after engine comes to complete stop.

Caution: Never leave switch key or override button in valve open or run position when engine is not running. With overhead tanks this would allow fuel to drain into cylinders, causing hydraulic lock.

Do Not Use The Compression Release Lever To Stop The Engine

Some engines are equipped with a compression release lever. Pulling this lever lifts the intake or exhaust (depending on engine model) valve push tubes and opens the valves. The push tubes are lifted off their sockets and extensive wear on the balls and sockets will result from using the compression release to stop the engine.

The compression release lever can be used as an aid in cranking, before starting, or while making injector and valve adjustment, but not to stop the engine.

Stop Engine Immediately If Any Parts Fail

Practically all failures give some warning to the operator before the parts fail and ruin the engine. Many engines are saved because alert operators heed warning signs (sudden drop in oil pressure, unusual noises, etc.) and immediately shut down the engine. A delay of ten seconds after a bearing failure causes a knock, may result in a ruined crankshaft or allow a block to be ruined by a broken connecting rod.

Never try to make the next trip or another load after the engine indicates that something is wrong. It does not pay!

Cold-Water Protection

1. For cold-weather operation, use of permanent-type ethylene glycol-base antifreeze with rust inhibitor additives is recommended. See Section 3.

2. To drain cylinder block and head on an Inline 855 Series Engine, open petcock in thermostat housing and remove drain plug in rear of oil cooler cover or at rear of block, Fig. 1-11. To drain a 927 Series Engine, open petcock in thermostat housing and remove two drain plugs; one in front of cooler and the other at rear of block, Fig. 1-12.

3. To completely drain V-378, V-504, V-555 and V-903 cylinder blocks and cylinder heads, open petcock or remove drain plug on water header plate and on lubricating oil cooler (1, Fig’s, 1-13 and 1-14) when used. If an air compressor, heat exchanger or other “water-cooled” accessory is used, open petcock and drain. Fig. 1-15. Failure to drain any of these units may cause serious damage in freezing weather.

4. To drain cylinder block and head on C Series, open drain cock or remove drain plug on side of cylinder block,
bottom of water pump and open vent cock on thermostat housing, Fig. 1-16.

Operator's Daily Report

Make A Daily Report Of Engine Operation To The Maintenance Department

The engine must be maintained in top mechanical condition if the operator is to get optimum satisfaction from its use.

Engine adjustments, etc., are the work of the Maintenance Department. However, the Maintenance Department needs daily running reports from the operator to make necessary adjustments in the time allotted between runs and to make provisions for more extensive maintenance work as the reports indicate the necessity.

Comparison and intelligent interpretation of the daily
report along with a practical follow-up action will eliminate practically all road failures and emergency repairs.

Report to the Maintenance Department any of the following conditions:

1. Low lubricating oil pressure,
2. Low power,
3. Abnormal water or oil temperature,
4. Unusual engine noise,
5. Excessive smoke,
6. Excessive use of coolant, fuel or lubricating oil,
7. Any fuel or lubricating oil leaks,
Maintenance Operations

Maintenance is the key to lower operating costs. A diesel engine — like any other engine — requires regularly scheduled maintenance to keep it running efficiently. Most diesel engines are purchased and used for the sake of revenue. Any failure or loss of efficiency reduces revenue, it also requires additional funds or repair.

Maintenance Schedule

Preventive maintenance performed on schedule is the easiest, as well as the least expensive type of maintenance. It permits the Maintenance Department to work on schedule, rather than at inconvenient hours.

Accessories must have a place in the maintenance schedule the same as the basic engine, for an accessory failure may put the entire engine out of operation.

A Good Maintenance Schedule Depends On Engine Application

Actual operating environment of the engine must govern establishment of the maintenance schedule. Some engines operate under rather clean conditions, some under moderately dusty conditions and others under severely dusty or dirty conditions; each type of operation must be analyzed as the maintenance schedule is established.

Hours of operation, miles [kilometers], or calendar period as shown on Page 2-2 are convenient units of measurement, and should be used to set up the maintenance schedule interval basis. These periods, as stated, are based on average operating conditions.

Extending The Maintenance Schedule

Any change in the established maintenance schedule should be preceded by a complete re-analysis of the operation. A lubricating oil analysis should be the major factor used in establishing the original maintenance schedule; it should be studied before making any change in or extending the schedule periods. In extremely dirty and under severe operating conditions, the scheduled maintenance period may even need reducing. Again, the operation should be re-analyzed and a lubricating oil analysis should be made. Extending or reducing the schedule period should be done only after a complete study; basically, it should be the same as used in establishing the original maintenance schedule period. Lubricating oil analysis is described on Page 2-6.

Using The Suggested Schedule Check Sheet

The maintenance schedule check sheet is designed as a guide until adequate experience is obtained to establish a schedule to meet a specific operation.

A detailed list of component checks is provided through several check periods; also a suggested schedule basis is given for hours of operation, calendar of time or miles [kilometers] driven.

A maintenance schedule should be established using the check sheet as a guide; the result will be a maintenance program to fit a specific operation.

The check sheet shown can be reproduced by any printer so the forms may be available for use. The person making each check can then indicate directly on the sheet that the operation has been completed. When a complete column (under A, B, C, etc.) of checks is indicated, the engine will be ready for additional service until the next check is due.
Maintenance Schedule

Cummins Automotive Engines

Check each operation as performed.

<table>
<thead>
<tr>
<th>A—Daily</th>
<th>B—Check</th>
<th>C—Check</th>
<th>D—Check</th>
<th>E—Check</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Check Operator Report</td>
<td>□ Repeat “A”</td>
<td>□ Repeat “A” and “B”</td>
<td>□ Repeat “A, B and C”</td>
<td>□ Repeat “A, B, C and D”</td>
<td>□ Spring and Fall</td>
</tr>
<tr>
<td>□ Check Leaks, Correct</td>
<td>□ Change Engine Oil</td>
<td>□ Steam Clean Engine</td>
<td>□ Clean and Calibrate Injectors</td>
<td>This Maintenance Check is often referred to as “In-Chassis Inspection” where some key parts, such as bearings, are checked for wear to determine if the engine may be operated for another service period. Likewise, oil consumption oil pressure and other signs of wear should be analyzed during the check. Wear limits and other information is available from Cummins Distributors and Dealers.</td>
<td></td>
</tr>
<tr>
<td>□ Check Engine Oil Level</td>
<td>□ Change Oil Filters</td>
<td>□ Clean Fuel Pump Screen and Magnet</td>
<td>□ Check Fuel Pump Calibration</td>
<td>□ Check Fan Mounting</td>
<td>□ Clean Cooling System</td>
</tr>
<tr>
<td>□ Lubricate P.T.O. Bearing</td>
<td>□ Record Oil Pressure</td>
<td>□ Check Engine Fuel Pressure</td>
<td>□ Clean Turbocharger, Check Clearances, as Necessary</td>
<td>□ Replace Hose as Required</td>
<td>□ Replace Hose as Required</td>
</tr>
<tr>
<td>□ Check Coolant Level</td>
<td>□ Lubricate Electric Equipment</td>
<td>□ Check Vibration Damper</td>
<td>□ Replace Anodized Bellows and calibrate</td>
<td>□ Check Cold Start Aid</td>
<td>□ Clean Electric Connections</td>
</tr>
<tr>
<td>□ Clean Fuel Tank Breather/Drain Sediment from Tanks</td>
<td>□ Change Fuel Filter Element</td>
<td>□ Lubricate Water Pump</td>
<td>□ Inspect Units, Install Rebuilt as Necessary</td>
<td>□ Check Thermal Controls</td>
<td>□ Check Cold Start Aid</td>
</tr>
<tr>
<td>□ Fill Fuel Tank</td>
<td>□ Check Air Piping</td>
<td>□ Clean Oil Bath Air Cleaner</td>
<td></td>
<td>□ Tighten Mountings</td>
<td>□ Check Cold Start Aid</td>
</tr>
<tr>
<td>□ Check Oil Bath Cleaner Oil Level</td>
<td>□ Check Air Cleaner Restriction</td>
<td>□ Check Alternator/Generator Cranking Motor</td>
<td></td>
<td>□ Check P.T.O. Adjust Clutch</td>
<td>□ Check Crankshaft Clearance</td>
</tr>
<tr>
<td>□ Drain Air Tank</td>
<td>□ Clean Air Cleaner Element</td>
<td>□ Lubricate Fan Hub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Drain Fuel Filter</td>
<td>□ Change Oil Bath Cleaner Oil</td>
<td>□ Adjust Injectors and Valves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Check Fuel System for Tampering</td>
<td>□ Clean Breather Element</td>
<td>□ Change Anodized Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Check All Systems for Damage</td>
<td>□ Clean Radiator — External</td>
<td>□ Check Anodized Setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Check Throttle Linkage</td>
<td>□ Replace Anodized Breather</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Check Fuel Pump Seals</td>
<td>□ Check Exhaust Back Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Change Corrosion Resistor</td>
<td>□ Check Supercharger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Check Engine Coolant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Check and Adjust Belt Tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Adjust Injectors and Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine Series

- **C, V6, V8 (470,504,555)**
 - Mileage: 6,000/8,000 [8,650/12,870] km/hrs
 - Hours: 300
 - Calendar: 3 Months
 - Interval: 36,000 km (97,960 hrs)
 - C: 1,600 [160,900] hrs
 - D: 2,200 [241,500] hrs
 - E: 2,500 [283,000] hrs

- **Super-250,NH, NT, V-903, VT-903**
 - Mileage: 10,000 [16,090] km
 - Hours: 250
 - Calendar: 3 Months
 - Interval: 50,000 km
 - C: 1,600 [80,500] hrs
 - D: 2,200 [241,500] hrs
 - E: 2,500 [283,000] hrs

Type Service

- **Stop and Go or Short Haul**
- **Line Haul**

Note:
1. Perform checks on operating basis of interval that occurs first. Normally, calendar period is used only when mileage is less than 1/3 that suggested during the three (3) month period.
2. All engines in short haul (pick up and delivery) applications change engine oil at 6,000 miles [9,650 Kilometers] or each two (2) months, also V6 without oil cooler.
3. At first oil change or initial inspection, adjust injectors and valves. Thereafter, at “C” Check.
Storage For Engines Out Of Service

If an engine remains out of service for three or four weeks (maximum six months) and its use is not immediately forthcoming, special precautions should be taken to prevent rust. Contact the nearest Cummins Distributor for information concerning engine storage procedures.

Attention Owner

Your Cummins Diesel Engine has been built by Cummins to comply with the requirements of the Federal (U.S.) Clean Air Act. Proper Maintenance of the Engine, which is your responsibility, is essential to keep emission levels low. This Section sets forth the maintenance schedule which you should follow.

To prove that you have properly maintained the Engine you should retain records, such as work orders and receipts, showing that scheduled maintenance has been performed.

The maintenance record form on this page is for your convenience.

Maintenance Performance Record

<table>
<thead>
<tr>
<th>Interval Basis</th>
<th>Actual</th>
<th>Distributor/Dealer</th>
<th>Authorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mileage</td>
<td>Check</td>
<td>Date</td>
<td>Mileage</td>
</tr>
<tr>
<td>6,000</td>
<td>8,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td>16,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>18,000</td>
<td>24,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>24,000</td>
<td>32,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>40,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>36,000</td>
<td>50,000</td>
<td>A, B, C</td>
<td></td>
</tr>
<tr>
<td>42,000</td>
<td>60,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>48,000</td>
<td>70,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>54,000</td>
<td>80,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>60,000</td>
<td>90,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>66,000</td>
<td>100,000</td>
<td>A, B, C</td>
<td></td>
</tr>
<tr>
<td>72,000</td>
<td>110,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>78,000</td>
<td>120,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>84,000</td>
<td>130,000</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>96,000</td>
<td>140,000</td>
<td>A, B, C, D</td>
<td></td>
</tr>
<tr>
<td>102,000</td>
<td>150,000</td>
<td>A, B, C, D</td>
<td></td>
</tr>
</tbody>
</table>
'A' Maintenance Checks

Check Operator's Report
Check operator's daily or trip reports, and investigate and correct reported cases of:

1. Low, high or change in lubricating oil pressure.
2. Low power.
3. Abnormal water or oil temperature.
4. Unusual engine noises.
5. Excessive smoke.
6. Excessive use of coolant, fuel or oil.
7. Observe all instruments and gauges (with coolant temperatures in operating range) with engine running at most applicable speed; take any corrective action required.

Check Leaks And Correct
Check for evidence of external air, coolant or oil leakage. Tighten capscrews, fittings, connections or replace gaskets as necessary to correct. Check oil dipstick and filler tube caps, Fig. 2-1. See that they are tightened securely.

Fuel Oil
1. Check for evidence of external fuel leakage.
2. If there are indications of air leaks on suction side of fuel pump, check for air leaks by placing ST-998 Sight Gauge (1, Fig. 2-2) in the line between fuel filter(s) and pump. Bubbles or "milky" appearance indicates an air leak. Find and correct.

Engine Oil Level
1. Check oil level with dipstick oil gauge located on the engine. For accurate readings, oil level should not be checked for approximately 15 minutes after engine shut-down. Keep dipstick with the oil pan with which it was originally shipped. Keep oil level as near "H" (high) mark as possible.

Caution: Never operate the engine with oil level below the "L" (low) mark or above the "H" (high) mark.

2. Add oil as necessary of the same quality and brand as already in the engine. See Section 3.

Lubricate Power Take-Off
Apply a small amount of any high-grade, soda base, short fiber, heat-resistant, gun-lubricant grease once a day through fitting on tapered part of housing to throw-out collar.
Check Coolant Level

Keep cooling system filled to operating level. Check coolant level daily or at each fuel fill point. Investigate for causes of coolant loss. At operating temperature the thermostat is open and water is free to circulate to all parts of the system and fill all air pockets. Requirements of a good coolant are described in Section 3. Check coolant level only when system is cool.

Clean Fuel Tank Breather(s) And Drain Sediment From Tanks

1. Clean tank breather(s) in cleaning solvent and dry with compressed air.

2. Open fuel tank drain cock(s) or remove plug(s) and drain approximately 1 pint of fuel from each tank. Close drain cock(s) or replace plug(s).

Fill Fuel Tanks

Always filter or strain fuel while putting it in tank. See "Fuel Oil Specifications," Section 3.

In cold weather, water which accumulated in the fuel system will sometimes freeze and block the supply of fuel. This condition can be prevented by adding one quart of denatured alcohol to each 50 gal. (189 lit or 42 U.K. gal) of fuel oil.

This not only keeps the water from freezing, but allows it to go into solution with the alcohol and fuel oil so it can pass through the fuel system and be "burned" without doing any damage.

Drain plugs are located in the bottom of some fuel filter cases, and in the sump of the fuel supply tank. More condensation of water vapor occurs in a partially filled fuel tank than in a full one. Therefore, fuel supply tanks should be kept as nearly full as possible by filling at the end of the work day. Warm returning fuel from injectors heats the fuel in the supply tank. If the fuel level is low in cold weather, the upper portion of the tank (which is not heated by returning fuel) tends to increase condensation. In warm weather both the supply tank and fuel are warm. In the night, however, the cool air lowers the temperature of the tank more rapidly than the temperature of the fuel. Again this tends to increase condensation.

Check Oil Bath Cleaner Oil Level

Daily check oil level, Fig. 2-3, in oil bath air cleaner to be sure oil level in oil cup is at indicated mark. To remove oil cup, loosen wing nuts. During wet weather and in winter months, excessive moisture in air cleaner oil sometimes causes cleaner to become flooded and results in oil pull-over or plugging of the bottom air cleaner screen. Add or change oil as necessary.

Drain Air Tank(s)

Open drain cock(s) and drain all moisture and sediment from air tank(s). Quantity of condensation will be dependent on local humidity.

Drain Sediment From Fuel Filter

1. Loosen drain cock, if used, at bottom of fuel filter case and drain out any accumulated water and sediment. Tighten drain cock.

2. Unscrew throw-away type element without drain cock; dump water and sediment. Fill element with clean fuel and replace.

Check Fuel System Adjustment

Visually check fuel system, aneroid (if used) etc., for misadjustment or tampering.

Check Completely For Damage

Visually check all systems and connections for leaks or damage.
'B' Maintenance Checks

At each “B” Maintenance Check, perform all “A” Checks in addition to the following.

Change Engine Oil

Kind of oil used, efficiency of filtering system and condition of engine must be considered in determining when to change oil.

Recent tests, using Cummins Fleetguard full-flow paper element filter in combination with a Fleetguard by-pass filter, oil recommended in Section 3, and using oil analysis with filter restriction measurement, indicate that a naturally aspirated on-highway truck may have the oil change period extended under closely controlled conditions. This indicates the economy that can be obtained through a good maintenance program.

It is suggested that oil change periods be set up on schedule indicated in Maintenance Schedule, and then extended, or in unusual cases reduced, based upon the type of oil used and other items as described in the above paragraph.

Factors to be checked and limits for oil analysis are listed below. Oil change at “B” Check, as shown in maintenance chart on Page 2-2, is for average conditions.

1. Bring engine to operating temperature, shut down engine, remove drain plug from bottom of oil pan, and drain oil in suitable container.

2. Install drain plug in oil pan of inline engine and V-903 engine, and torque to 60 to 70 ft-lbs [8 to 9.7 kg m]. Install drain plug in oil pan of V-378, V-504, V-555 engines and torque to 35 to 40 ft-lbs [4.8 to 5.5 kg m].

3. Fill crankcase to “H” (high level) mark on dipstick

4. Start engine and visually check for oil leaks.

5. Shut down engine; allow 15 minutes for oil to drain back into pan, recheck oil level with dipstick. Add oil, as required, to bring oil level to “H” mark on dipstick.

Lubricating Oil Analysis

The most satisfactory method for determining when to change lubricating oil is by oil analysis using laboratory tests. Fig. 2-4. After several test periods a time interval for the oil change can be established; however, a new series of tests should be run if filters, oil brands or grades are changed.

Analysis Test For Lubricating Oil

Check oil properties in the following list during analysis. These methods are fully described in the American Society for Testing Materials Handbook.

<table>
<thead>
<tr>
<th>Oil Property</th>
<th>Test Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100 deg, F and 210 deg, F</td>
<td>ASTM-D445</td>
</tr>
<tr>
<td>Sediment</td>
<td>ASTM-D893</td>
</tr>
<tr>
<td>Water</td>
<td>ASTM-D95</td>
</tr>
<tr>
<td>Acid and Base Number</td>
<td>ASTM-D664</td>
</tr>
</tbody>
</table>

General Limits For Oil Change

1. Minimum Viscosity (dilution limit): Minus one SAE grade from oil being tested or point equal to a minimum containing five percent by volume of fuel oil.

2. Maximum Viscosity: Plus one SAE grade from oil being tested, or ten percent increase at 210 deg. F [99 deg. C] or 25 percent increase at 100 deg. F [38 deg. C].

3. Sediment Content: Normal pentane insoluble 1.0 to 1.5
percent. Benzine insoluble 0.75 to 1.0 percent.
4. Acid Number: Total number 3.5 maximum.
5. Water Content: 0.2 percent maximum.
6. Additive Reduction: 25 percent maximum.

Caution: If the above tests indicate presence of any bearing metal particles, or if found in filters, the source should be determined before a failure results.

The efficiency of any maintenance program can only be judged on the basis of the failures prevented or intercepted before the engine or unit is damaged.

Change Engine Full-Flow Filter Element
(See Type With Center Bolt)

1. Remove drain plug from filter case and allow oil to drain. Replace drain plug.
2. Loosen center bolt and remove filter can and filter element. See Fig's. 2-5, 2-6 and 2-7.
3. Inspect filter element then discard.
 a. Inspect for metal particles.
 Caution: If the inspection indicates presence of any bearing metal particles, the source should be determined before a failure results.
 b. Inspect outside wrapper of element for wrinkles and pleats for waviness or bunching. Presence of these conditions indicates that oil contains moisture.
 c. If element is relatively clean, it may be possible to lengthen change periods.
 d. If element is clogged, the change period should be shortened. Oil pressure drop reading across filter is the best way to determine change periods. Pressure drop from inlet (1, Fig. 2-6) to outlet side (2) of filter should not exceed 10 psi [0.70 kg/sq cm] with 140 deg. F [60 deg. C] oil and engine at high-idle speed.
 e. Discard element after inspection.
4. Remove seal ring from filter head and discard,
 Caution: Two or more seal rings attached to filter head will cause leakage, permitting unfiltered oil to enter by-pass element.
5. Clean filter case thoroughly. Handle case and/or store in manner to prevent out-of-round.

Note: It is recommended that every second oil change to the small seal rings (4 and 17, Fig. 2-7) at bottom of oil filter can to prevent oil leakage due to hardening of rubber seals. Inspect seals each oil change for deterioration.
6. Check to make sure element end seals are in place and install new element over spring support assembly.

7. Position new seal ring on filter head or can; install new element in filter case. Position to filter head and tighten center capscrew to 25 to 35 ft-lbs [3.5 to 4.8 kg m]. Tighten clamp-type filter capscrews securely.

Caution: Make sure to fit new seal ring to filter can or head as design requires or seal may become distorted or damaged.

8. Fill engine to “H” (high level) mark on dipstick with lubricating oil meeting specifications listed in Section 3. Run engine and check for leakage.

9. Recheck engine oil level; add oil as necessary to bring oil level to “H” mark on dipstick.

Note: Always allow oil to drain back to oil pan before checking level. This will require 15 minutes.

Change Engine Full-Flow Filter Element (NTA Series And Filter Mounted Atop Cooler)

1. Remove drain plug from filter housing and allow oil to drain.

2. Remove capscrews and washers securing cover to housing; lift off cover and discard gasket.

3. Lift out filter element; inspect element then discard.

4. Wipe housing clean with lint free cloth; install drain plug.

5. Insert new element in filter housing seating securely on end seal.

6. Position cover with new gasket over element to housing; secure with capscrews and lockwashers.

Change Lubricating Oil By-Pass Filter Element

To change Cummins Fleetguard by-pass filter elements:

Note: By-pass filters may be mounted either vertically, horizontally or inverted; all are serviced in like manner.

1. Remove drain plug (5, Fig. 2-8) from bottom of housing and drain oil.

2. Remove clamping ring capscrew (1) and lift off cover.

3. Unscrew upper support hold-down assembly (3); lift out element (4) and hold-down assembly. Discard element.

4. Clean housing and hold-down assembly in solvent.

5. Inspect hold-down assembly spring and seal. Replace if damaged.

6. Inspect drain plug and connections. Replace if damaged.

7. On the Cummins Fleetguard by-pass filter, check orifice plug (6) inside oil outlet connection or standpipe; blow out with air jet to make sure orifice is open and clean.

8. Check filter cover “O” ring (7). Replace if damaged or deteriorated.

9. Install new element in housing.

10. Replace upper support hold-down assembly in filter and tighten down to stop.

11. Position “O” ring seal on housing flange.

12. Install cover and clamping ring; tighten capscrews until clamping lugs are indexed.

13. Add enough extra oil to crankcase to fill case and element.

Caution: Never use a by-pass filter in place of a full-flow filter.

Record Oil Pressure

Start the engine and operate at 800 to 1000 rpm until the oil temperature gauge reads 140 deg. F [60 deg. C]. Reduce
engine speed to idle and record the oil pressure. A comparison of pressure at idling speed with previous readings will give an indication of progressive wear of lubricating oil pump, bearings, shafts, etc. These readings are more accurate and reliable when taken immediately after an oil change.

Lubricate Alternator Or Generator

Lubricate alternator (if required) or generator by adding five or six drops of SAE 20 lubricating oil to oil cup or by turning down grease cup a maximum of one turn.

Caution: Avoid over-lubrication which is harmful to insulation.

If no cups are present, unit contains sealed bearings and requires no lubrication.

When a generator or alternator filter is used, clean filter screen at each lubrication period. Remove filter screen and wash in an approved cleaning solvent; blow dry with compressed air and reassemble.

Lubricate Cranking Motor

Electric

Add five or six drops of clean SAE 30 weight lubricating oil to cranking motor bearings. Fig. 2-9

Air

Air cranking motor may be equipped with grease fittings, felt wicks with outer grease cups or air line lubricators. Follow manufacturer's recommendation for procedure interval and lubricant specifications.

Change Fuel Filter Element

When double elements of the standard or extended life (throw-away) fuel filters are used, the capacity is approximately doubled.

The most accurate method of determining element change period is by measurement of fuel restriction as follows:

Check Fuel Restriction

To check restriction, connect a ST-434 Vacuum Gauge to the fuel pump as shown in (2, Fig. 2-10) using the special adapter furnished. If restriction reads 8 to 8.5 inches vacuum while the engine is running at full speed and load, change element or remedy other sources of restriction. When restriction becomes as great as 10 or 11 inches vacuum, the engine will lose power.

Throw-Away Type Filter

1. Unscrew combination case and element, discard.
2. Fill new filter with clean fuel.
3. Install filter; tighten by hand until seal touches filter head. Tighten an additional one-half to three-fourths turn.

Caution: Mechanical tightening will distort or crack filter head.

Replaceable Element

1. Remove drain plug from bottom of filter case and drain contents.
2. Loosen bolt at top of fuel filter. Take out dirty element.
clean filter case and install a new element, Fig. 2-12.

3. Fill filter case with clean fuel to aid in faster pick-up of fuel. Install a new gasket in filter head and assemble case and element. Tighten center bolt to 20 to 25 ft-lbs [2.8 to 3.5 kg m] with a torque wrench.

Check Air Piping, Turbocharger Connections And Manifolds

Check air intake piping from air cleaner to turbocharger or intake manifold. Check for loose clamps, connections, cracks, punctures or tears in hose or tubing. Tighten clamps, Fig. 2-13, manifold capscrews and turbocharger mounting nuts. Replace parts as necessary to insure an air-tight intake system.

Check Inlet Air Restriction Gauge

The best method for determining dry-type air cleaner maintenance periods is through air restriction checks.

A mechanical restriction gauge is available to indicate excessive air restriction. This gauge can be mounted in air cleaner outlet or on vehicle instrument panel. The restriction indicator signals when to change cartridges. The red flag (1, Fig. 2-14) in window gradually rises as cartridge loads with dirt. Do not change cartridge until flag reaches top and locks in position. When locked, flag will remain up after engine is shut down. Change cartridge when flag locks at top. After changing cartridge, reset indicator by pushing reset button (2). Push button all the way in firmly; then release. If button sticks, repeat pushing slowly.

Note: Never remove felt washer from gauge, it is necessary to absorb moisture.

Vacuum switches are available which actuate a warning light on the instrument panel when air restriction becomes
excessive, items required for installation are:

1. Electric source (1, Fig. 2-15).
2. Air piping with fitting for switch (2).
3. Vacuum switch (3).

![Fig. 2-15, (V11010). Vacuum switch to check air inlet restriction](image)

Note: Air restriction checks should not be used to determine maintenance periods for oil bath air cleaners. Before dirt build-up reaches 1/2 inch [12,700 mm] maximum height, perform maintenance as described under "Change Air Cleaner Oil."

Check Air Inlet Restriction – Vacuum Gauge

When a restriction gauge is not part of the system, check as follows:

1. On naturally aspirated engines, attach vacuum gauge or water manometer in middle of intake manifold or on air intake piping. When located in air intake piping, adapter must be perpendicular to air flow and not more than 6 inches [152.4 mm] from air intake manifold connection.

2. On turbocharged engines, the vacuum manometer should be connected to air intake pipe, one to two pipe diameters upstream from turbocharger inlet, in a straight section of pipe. The engine should be at normal operating temperature and at governed speed. Turbocharged engines should be under full load with time provided to allow the turbocharger to reach maximum speed when restriction is measured. (High idle, no load readings on turbocharged engines are not satisfactory.)

3. Air restriction readings may be taken at air cleaner outlet pipe. The adapter must be mounted perpendicular to air flow, and restriction must not exceed 20 inches [508 mm] of water or 1.5 inches [38 mm] of mercury when checked at this location.

4. When checking at the engine intake manifold, idle engine until normal operating temperature is reached.

5. Operate engine at rated speed and take reading from vacuum gauge or manometer. Air restriction must not exceed 25 inches [635 mm] of water or 1.8 inches [45.72 mm] of mercury at intake manifold.

6. If air restriction exceeds limits in Step 3 or 5 above:
 a. Clean or replace dry-type cleaner element.
 b. Replace damaged air piping, rain shield or housing.
 c. Remove excessive bends or other source of restriction in air piping.

Clean Air Cleaner Elements

The paper element in a dry-type air cleaner, Fig’s 2-16, 2-17 and 2-18 may be cleaned several times by using an air jet to blow off dirt or by washing with nonsudsing household detergent and warm water, preferably 120 to 140 deg. F [49 to 60 deg. C], then drying with compressed air, approximately 40 psi [2.8 kg/sq cm]. Do not hold air jet too close to paper element or damage to element may result.

Elements that have been cleaned several times will finally clog and air flow to engine will be restricted. After cleaning, check restriction as previously described and replace element if necessary.

Holes, loose end seals, dented sealing surfaces and other forms of damage require immediate element replacement.

![Fig. 2-16, (N11003). Air cleaner dry type](image)
Caution: Holes in the element of a dry-type air cleaner render cleaner inoperative. Do not use damaged cleaner element.

Replace paper element in all dry-type air cleaners when breaks appear or if air restriction is still excessive after element has been cleaned. To change element:

1. Loosen wing nut (1, Fig. 2-16) securing bottom cover (2) to cleaner housing (3). Remove cover.
2. Pull element (6) down from center bolt (4).
3. Remove gasket (5) from outlet end (7) of housing.

When installing the element, make sure it seats on the gasket at the air cleaner outlet end.

Heavy Duty Dry-Type Air Cleaners

Heavy duty air cleaners (single and dual types) combine centrifugal cleaning with element filtering, Fig’s. 2-17 and 2-18 before air enters engine.

Dirty air enters through an opening in the side of the single or dual type, cyclopac cleaner body. On single element type air immediately travels through a ring of vanes around the outside and through a primary element and on into the engine, Fig. 2-17. Whereas, on a dual element type air travels through a ring of vanes around the outside and through a primary element (6), Fig. 2-18 and then through a safety element (9) and on into the engine.

Before disassembly, wipe dirt from cover and upper portion of air cleaner. To clean single or dual types:

1. Loosen wing bolt, remove band securing dust pan (1, Fig. 2-17), (2, Fig. 2-18).
2. Loosen wing nut (2, Fig. 2-17 and 3, Fig. 2-18), remove dust shield (3, Fig. 2-17), (4, Fig. 2-18) from dust pan (1, Fig. 2-17), (2, Fig. 2-18), clean dust pan and shield.
3. Remove wing nut (2, Fig. 2-17), (5, Fig. 2-18) securing air cleaner primary element (6, Fig. 2-18) in air cleaner housing, inspect rubber sealing washer on wing nut (4, Fig. 2-17), (5, Fig. 2-18).
4. Blow out element from clean air side with compressed air.

Caution: Air pressure should not be more than 100 psi [7 kg/sq cm] to avoid rupturing element. Do not concentrate air pressure in one spot.

5. Wash element with non-sudsing household detergent and warm water 120 to 140 deg. F [49 to 60 deg. C]. Dry with compressed air 40 psi [2.8 kg/sq cm].

6. Inspect element after cleaning to be sure no holes are present.
7. Install new or cleaned primary element.

8. Be sure gasket washer (4, Fig. 2-17), (6, Fig. 2-18) is in place under wing nut before tightening.

9. Reassemble dust shield (3, Fig. 2-17), (4, Fig. 2-18) and dust pan (1, Fig. 2-17), (2, Fig. 2-18) position to air cleaner housing and secure with band (1, Fig. 2-18).

10. On dual element type cyclopac cleaner:

a. Check air restriction indicator, if air restriction is excessive, disassemble air cleaner, remove wing nut (8, Fig. 2-18), and replace safety element (9).

b. Reassemble air cleaner as described in Steps 8 and 9 above.

Cartridge Type Air Cleaner Element

1. Loosen wing nuts (4, Fig. 2-19 or 2-20) on air cleaner housing (5) to remove pre-cleaner panel with dust bin (1). To remove pre-cleaner panel (2) equipped with exhaust aspirator loosen “U” bolt clamp securing pre-cleaner to aspirator tubing.

2. To remove dirty Pancake cartridge (3), insert fingers in cartridge opening using a “bowling-ball grip.” Loosen all four corners of cartridge, one at a time, by pulling straight out.

With larger cartridge, it may be necessary to break seal along edges of cartridge. After seal has been broken, pull the cartridge straight out and slightly up so cartridge will clear sealing frame and edges of air cleaner housing.

Cleaning And Inspection

1. Clean pre-cleaner openings (2) of all soot, oil film and any other objects that may have become lodged in openings.

a. Remove any dust or dirt that may be in lower portion of pre-cleaner and aspirator tubing. Inspect inside of air cleaner housing to be sure it is free of all foreign material.

b. Pre-cleaners with dump valve in dust bin automatically expel dust and water while engine is running. During engine operation the dust bin is under a slight vacuum utilizing the engines pulsing action to open and close the dump valve. The dump valve also expels dirt and water whenever engine is shut down.

2. Inspect dirty cartridge for soot or oil. If there is soot inside Pancake tubes, check for leaks in engine exhaust system, exhaust “blow-back” into air intake and exhaust from other equipment. If cartridge appears “oily,” check for fumes escaping from crankcase breather. Excessive oil mist shortens life of any dry-type cartridge. Trouble-shooting before new cartridge is placed in the air cleaner can appreciably lengthen cartridge life.

3. It is not recommended to clean and reuse cartridge. Considerable laboratory testing shows that shaking, washing, rapping or blowing out with compressed air can cause cracks or ruptures in paper filter cartridges, which would permit wear-causing dirt particles to enter engine. If a failure occurs, there is no way of discovering it until cartridge is changed again.

4. Repeated tests have also shown that fine particles that penetrate deep into pores of filter paper cannot be removed by any method of cleaning. When returned to service, life expectancy (even if no failure occurs) of a paper cartridge will be only a fraction of original service life.

5. Inspect clamps and flexible hose or tubing to be sure all fittings are air tight on cleaners with exhaust aspirators.

6. The pre-cleaner dust bin is self-cleaning.
Assembly

1. Inspect new filter cartridge for shipping damage before installing.

2. To install a new cartridge, hold cartridge (3, Fig. 2-19 and 2-20) in same manner as when removing from housing (5). Always inspect inside of air cleaner housing keeping it free of all foreign material. Insert clean cartridge into housing; avoid hitting cartridge tubes against sealing flange on edges of air cleaner housing.

3. The cleaner requires no separate gaskets for seals; therefore, care must be taken when inserting cartridge to insure a proper seat within air cleaner housing. Firmly press all edges and corners of cartridge with fingers to effect a positive air seal against sealing flange of housing. Under no circumstances should cartridge be pounded or pressed into center to effect a seal.

4. Replace pre-cleaner panel (2) and tighten wing nuts (4) by hand, for final tightness turn 1-1/2 to 2 turns with a small adjustable wrench. On pre-cleaner with exhaust aspirator, assemble aspirator tube to pre-cleaner panel and tighten "U" bolt.

5. Care should be taken to keep leaves, rags or side curtains from obstructing cleaner face. Obstructing air intake can result in reverse exhaust flow through bleed line and damage to cartridge.

Caution: Cartridge elements or tube damage may result from overtightening wing nuts or using a hammer when inserting the cartridge.

Change Oil Bath Air Cleaner Oil And Clean Tray Screen

Before dirt build-up reaches 1/2 inch [12.7 mm], remove oil cup from cleaner. Discard oil and wash cup in cleaning solvent or fuel oil.

Note: During wet weather and in winter months, many oil bath air cleaners are neglected because visible dust and dirt laden air is not encountered. However, changing of oil is equally as important as during dusty weather since the air cleaner inlet may be located in a wheel or air stream which carries excessive moisture into the cleaner.

Fill oil cup to level indicated by bead on its side with clean, fresh oil and assemble to cleaner. Oil of the same grade as that in crankcase should be used in cleaner; however, in extremely cold weather a lighter grade may be necessary. A straight mineral, non-foaming detergent, or non-foaming additive oil may be used in oil bath air cleaners.

Caution: Never use crankcase drainings, this oil would already be "dirt laden."

Clean Tray Screen

Immerse tray screen (1, Fig. 2-21) in kerosene or cleaning solvent.

Slosh screen up and down several times. Dry thoroughly with compressed air, and reassemble to air cleaner.

Note: If tray screen is extremely dirty or coated with varnish, it may be necessary to singe the screen with a flame. Be careful not to melt tin plate on screen.

Clean Crankcase Breather

Several different types of crankcase breathers are used on Cummins Engines; some are pressed into the valve cover, others are a combination breather and oil filler tube cap.

Mesh Element Breather

1. Remove wing nut (6, Fig. 2-22), flatwasher and rubber washer securing cover (1), to breather body (5).

2. Lift off cover and lift out breather element (2), vapor element (3) and gasket (4).

Cleaning And Inspection

1. Clean all metal and rubber parts in approved cleaning solvent.

2. Dry thoroughly with compressed air.

3. Inspect rubber gasket; replace if necessary.

4. Inspect body and cover for cracks, dents or breaks; discard all unserviceable parts.
Assembly

1. Install cleaned or new breather element (2, Fig. 2-22) and cleaned vapor element (3) to breather body (5).

2. Install rubber gasket (4) in cover (1), position cover assembly to body (5).

3. Install rubber washer, flatwasher and wing nut (6); tighten securely.

Paper Element Breather

1. Remove wing nut (6, Fig. 2-22) flatwasher and rubber washer securing cover (1) and element assembly to breather.

2. Lift off cover and lift out element (2) and gasket (4).

Caution: Do not attempt to clean paper elements. Service life of such elements are very short, use a new element.

4. Clean and inspect parts as described under “Mesh Element Breather.”

5. Assemble parts using new paper element, see assembly under “Mesh Element Breather.”

Screen Element Breather – Cleaning And Inspection

1. Remove vent tube if not previously removed.

2. Remove capscrews, washers, cover (1, Fig. 2-24) screens (3) and baffle (4) from the breather body (5).

3. Clean vent tube, screens and baffle in an approved cleaning solvent. Dry with compressed air. Wipe out breather housing.

4. Assemble baffle (4), screens (3) and new gasket (2) in body (5).

5. Replace cover (1) with cover boss resting securely on point of screen; secure with washers and capscrews.

6. Replace vent tube.

Clean (Externally) Radiator Core

Blow out all insects, dust, dirt and debris (leaves, bits of paper, etc.) that may be on front of radiator or lodged between radiator core fins and tubes.
Check Throttle Linkage

Check throttle linkage and make sure it is in good operating condition. Check throttle travel to make sure linkage operates throttle from stop to full throttle and that degree of travel is within specifications for application.

Check Fuel Pump Seals

Throttle stop screws and governor idle screw plug are "sealed" after final pump setting. Seals should be regularly checked to prevent, or catch immediately, unauthorized fuel pump settings.

Change Corrosion Resistor

The initial service life of a corrosion resistor element on a new or newly rebuilt engine or after complete change of coolant supply is 3000 miles or 100 hours; maintenance periods thereafter are as follows:

Change corrosion resistor or element at each "B" Check unless facilities are available for testing. See "Check Engine Coolant," following.

Selection of element to be used should be based upon "Coolant Specifications," Section 3.

Note: Whenever coolant supply is changed (spring and fall), the system must be drained and flushed.

Caution: Make sure corrosion resistor, bracket and mounting point on engine are free from paint to form a good ground. If located off engine, run ground wire from resistor mounting capscrew to engine.

Package Type Element

1. Close shut-off valves on inlet and drain lines. Unscrew drain plug at bottom of housing.

2. Remove cover capscrews and lift off cover; discard gasket.

3. Remove concave plate securing element; lift element from housing and discard. Remove flat plate below element.

4. Lift spring from housing.

5. Replace spring and install new lower flat plate.

6. Remove new element from transparent package; install element in housing. Fig. 2-25.

Caution: Make sure antifreeze being used in cooling system is compatible with chromate element. Check with a Cummins Distributor, they are furnished with a list of compatible antifreezes each year.

7. Install new upper concave plate, gasket and cover.

8. Replace drain plug and open shut-off valves in inlet and drain lines.

Spin-On Element

1. Close shut-off valves on inlet and drain lines.

2. Unscrew element and discard.

3. Install new element (see caution above), tighten until seal touches filter head. Tighten an additional one-half to three-fourths turn. Fig. 2-26, open shut-off valves.

Caution: Mechanical tightening will distort or crack filter head.
Check Engine Coolant

Periodic tests of engine coolant should be made to insure that the frequency of corrosion resistor servicing or concentration of chromate is adequate to control corrosion for specific condition of operation. In cases where "make-up" water must be added frequently, we suggest that a supply of water be treated and added as necessary.

When using plain water in a cooling system with a corrosion resistor (with chromate-type element) or when treating with chromate compounds, the concentration of effective inhibitor dissolved in coolant can be measured by the color comparison method. Cummins Coolant Checking Kit ST-993 is available from Cummins Distributors for this check. Fig. 2-27.

Most commercially available antifreezes contain a coloring dye that renders the color comparison method ineffective. When colored antifreezes are present in the coolant, effective control of corrosion can be determined by inspecting coolant for accumulation of reddish-brown or black, finely granulated dirt. A small amount of corrosion produces significant quantities of these corrosion products; therefore, if corrosion inhibitor servicing is adjusted at the first indication of increased accumulation of these products, actual corrosion will be limited to a negligible amount.

Examine sump of corrosion resistor for these "dirt" materials at time of servicing or check them in a small sample of coolant drained from bottom of radiator after allowing coolant to settle.

Certain antifreeze compounds are chemically incompatible with the chromate corrosion resistor element. This is evidenced by the formation of a green scum in the radiator filler opening. See nearest distributor for a list of antifreeze known to be compatible with chromate elements.

pH Value Test

1. Separate tubes marked "pH" are furnished in the test kit. Select a tube and fill to mark with coolant to be checked.
2. Add eight drops of pH Reagent to tube and mix thoroughly.
3. Insert tube in comparator hole marked "pH."
4. Compare color of test sample with color standards on either side. Preferred range is 8 to 9.5.
5. Wash out test tubes after each test and keep reagent container cups in place.

Chromate Concentration Test

Chromate concentration should be maintained at or above 3500 PPM.

1. Draw sample of coolant and pour into tube marked "chromate."
2. Dilute coolant 50% with clear water.
3. Insert sample into comparator hole marked "chromate."
4. Compare color of test sample with color standards on either side. Preferred range is 100 to 150 grains per gal. (3.8 lit or 0.8 U.K. gal) or 1700 to 2500 parts per million (ppm) as the standard indicates. The dilution (Step 2) is done to match the standard, but actual results are 3400 to 5000 (ppm) range of chromate concentration.
5. Wash out test tubes after each test.

Adjusting Coolant To Specifications

If above tests indicate coolant is outside specifications, make an adjustment immediately to prevent corrosion.

If Cummins Corrosion Resistor is used, change element, and run engine four to six hours; then, check coolant again; in extreme cases it may be necessary to change element a second time. However, the latter condition may be due to larger coolant system than corrosion resistor was designed to treat; note reference on resistor label.

If chromate compounds are used, follow manufacturers instructions to bring concentration to 3500 PPM. Amount of compound required depends upon cooling system capacity.

Make-Up Coolant Specifications

Where possible, it is recommended that a supply of
make-up coolant be prepared to the following specifications, using soft water where possible and a compatible antifreeze. Chromate treatment of coolant assures constant level of concentration when coolant is added and requires no change in schedule of element replacement.

Chromate Concentration -\(\text{NA}_2\text{CRO}_4 = 3500 \text{ PPM (Min.)} \)

\[\text{NA}_2\text{CRO}_4 = 7000 \text{ PPM (Max.)} \]

pH Value - 8 to 9.5

Alkalinity - 1500 ppm CaCO₃

(Methyl Orange Indicator)

Chromate compounds for use in preparation of treated make-up coolants are available from the sources listed below or other chemical distribution points. Make sure the preparation used will provide protection to the values indicated above,

1. Formula 2399 from Bird-Archer Co.,

 4337 North American Street

 Philadelphia, Pennsylvania, 19104

2. Dearborn Compound No. 530 from

 Dearborn Chemical Company

 14230 Ridge Road

 Plymouth, Michigan, 48170

3. NALCO No. 38 from NALCO Chemical Company

 180 N. Michigan Avenue

 Chicago, Illinois, 60601

Note: Corrosion resistor element must continue to be used with pre-treated water.

Check And Adjust Belt Tension

The service life of belts used to drive fans, water pumps and generators/alternators can be greatly extended by proper installation, adjustment and maintenance practices. Neglect or improper procedures often lead to problems of cooling or bearing failures, as well as short belt life. Following are the most important rules to be observed to extend belt life.

Belt tension adjustments are often neglected because of difficult accessibility. One general rule is applicable to all such operations: **All driven assemblies must be secured in operating position before reading or judging belt tension.**

1. Always shorten distance between pulley centers so belt can be installed without force. Never roll belt over the pulley and never pry it on with a tool such as a screwdriver. Either will damage belts and cause early failure. Diagonal cuts on a failed belt indicate that the failure was caused by rolling a tight belt over the pulley. Cuts from prying a belt in place may be either diagonal or vertical.

2. Always replace belts in complete sets to prevent early failure and to provide efficient operation. Belt riding depth should not vary over 1/16 inch [1.59 mm] on matched belt sets.

3. Pulley misalignment must not exceed 1/16 inch [1.59 mm] for each foot [0.3 m] of distance between pulley centers.

4. Belts should not bottom on pulley grooves nor should they protrude over 3/32 inch [2.38 mm] above top edge of groove.

5. Do not allow belts to rub any adjacent parts.

Belt Tension

1. Tighten belts up to 1/2 inch [12.7 mm] wide, until a reading of 90 to 110 lbs. is indicated on ST-968 Belt Tension Gauge, (Fig. 2-28). For belts over 1/2 inch [12.7 mm] wide, use ST-1138 Belt Gauge, (Fig. 2-29).

2. If belt tension gauge is not available, tighten belts so pressure of index finger will depress belt amount of deflection in Table 2-2. The index finger should be extended straight down from hand; in this manner, force will be approximately 13 lbs. [5.9 kg] deflection (1, Fig. 2-30) per foot [0.3 m] of span (2).

Table 2-2: Belt Tension — Inch [mm]

<table>
<thead>
<tr>
<th>Belt Width</th>
<th>Deflection Per Ft.[0.30 m] of Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>[12.7]</td>
</tr>
<tr>
<td>11/16</td>
<td>[17.46]</td>
</tr>
<tr>
<td>3/4</td>
<td>[19.05]</td>
</tr>
<tr>
<td>7/8</td>
<td>[22.22]</td>
</tr>
<tr>
<td>1</td>
<td>[25.40]</td>
</tr>
<tr>
<td></td>
<td>13/32</td>
</tr>
<tr>
<td></td>
<td>13/32</td>
</tr>
<tr>
<td></td>
<td>7/16</td>
</tr>
<tr>
<td></td>
<td>22/22</td>
</tr>
<tr>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td></td>
<td>[10.32]</td>
</tr>
<tr>
<td></td>
<td>[10.32]</td>
</tr>
<tr>
<td></td>
<td>[11.11]</td>
</tr>
<tr>
<td></td>
<td>[12.70]</td>
</tr>
<tr>
<td></td>
<td>[14.29]</td>
</tr>
</tbody>
</table>

Fig. 2-28, (VS1475). Checking belt tension with ST-968
Inline Engine Water Pump Belts (No Idler)

1. Eccentric water pump adjustment,

 a. Loosen water pump clamp ring to allow pump body to turn.

 b. Loosen pump body by pulling up on belts. A sharp jerk may be required. Some coolant will be lost.

 c. Insert bar in water pump body slots and rotate pump body counterclockwise to tighten belts.

 Note: Do not adjust to final tension at this time.

 d. Snug clamp ring capscrew farthest from belts, on exhaust side to 5 ft-lbs [0.7 kg m].

 e. Snug two capscrews above and below the first one to 5 ft-lbs [0.7 kg m].

 f. Snug clamp ring capscrew on belt side, then two remaining capscrews to 5 ft-lbs [0.7 kg m].

 g. Finish tightening by alternating from side to side in 5 ft-lbs [0.7 kg m] increments to a final torque to 12 to 15 ft-lbs [1.7 to 2.1 kg m].

 h. Check the belt tension with applicable Belt Tension Gauge.

 Notice that final belt tension was not obtained by the adjustment alone. The water pump body was pulled straight by snugging the capscrews in the order described, thus increasing belt tension to final value.

2. Adjustable (split) pulley water pumps.

 a. Remove the capscrews which join the two halves of the pulley.

 b. The outer half of the pulley is screwed onto the hub extension of the inner half. Some pulleys are provided with flats, and some with lugs for barring.

 c. Bar the engine over to roll the belt outward on the pulley as the outer half is turned in.

 d. Adjust until the ST-968 Belt Tension Gauge reads 90 to 110 pounds, or until the belt will deflect 3/4 to 1 inch when pressure of index finger is applied.

 e. Turn the outer half in enough to align the capscrew
holes.

f. Start the capscrews and tighten alternately and evenly. Final tension is:

5/16 – 18 capscrew to 10 to 12 ft-lbs [1.4 to 1.7 kg m]
3/8 – 16 capscrew to 17 to 19 ft-lbs [2.4 to 2.6 kg m]

g. Bar the engine over one or two revolutions to seat the belt.

h. Recheck the belt tension.

Inline Engine Water Pump Belts (With Idler)

1. Loosen capscrews and lockwashers or locknut securing idler pulley to bracket or water pump.

2. Using pry bar (NTA) or adjusting screw (Super-250) adjust idler pulley until belt tension shows 60 to 80 pounds as measured with ST-968 Belt Tension Gauge.

3. Secure idler pulley or bracket in position by tightening locknut or capscrews and lockwashers.

3. Tighten the locknut or capscrews until the fan hub is straight. As this is done, belt tension will increase. Snug the nut to maintain hub in proper alignment with the fan hub bracket.

Caution: Do not adjust to full tension with the adjusting screw, this would result in overtightening.

4. Check belt tension with applicable gauge. The gauge should read 90 to 100 pounds. If a gauge is not available, the belt should be checked with pressure of index finger at the center of the longest span. Deflection should be one thickness per foot of pulley center distance.

5. Tighten inline engine locknut to 400 to 450 ft-lbs [55.3 to 62.2 kg m]; then back off 1/2 turn. Tighten capscrews 75 to 85 ft-lbs [10.4 to 11.8 kg m].

a. On V-903 engines tighten capscrews to 75 ft-lbs [10.4 kg m] or single nut to 450 ft-lbs [62.2 kg m].

b. On V-378, V-504 and V-555 engines, tighten fan hub capscrews to 78 to 85 ft-lbs [10.8 to 11.8 kg m] or large nut to 300 ft-lbs [41.5 kg m].

6. Recheck belt tension.

7. Back out adjusting screw one-half turn to prevent breakage.

Generator/Alternator Belts

These belts are much easier to adjust since the generator/alternator is mounted on a swinging bracket.

Belt tension should be 90 to 110 pounds as measured with the applicable gauge. When no gauge is available, index finger pressure should not deflect belt more than indicated in Table 2-2.

Readjusting New Belts

All new belts will loosen after running for an hour or more and must be readjusted. Readjust as described under “Belt Tension.”

Fan Drive Belts

Most fans are mounted on hub assemblies, supported in a bracket; an adjusting screw is provided which raises or lowers the hub shaft to adjust the belt tension. On V-type this adjusts both fan and water pump belts.

1. Loosen large locking nut on fan hub shaft or capscrews securing fan hub shaft to mounting bracket. The fan hub will fall out of line when this is done.

2. Turn the adjusting screw to increase belt tension.
C’ Maintenance Checks

At each “C’” Maintenance Check, first perform all “A,” and “B” Checks in addition to those following.

Steam Clean Engine

There are many reasons why exterior of engine should be kept clean. Dirt from the outside will find its way into fuel and lubricating oil filter cases and into rocker housings when covers are removed unless dirt is removed first.

Steam is the most satisfactory method of cleaning a dirty engine or piece of equipment. If steam is not available, use mineral spirits or some other solvent to wash the engine.

All electrical components and wiring should be protected from the full force of the steam jet.

Clean Fuel Pump Screen And Magnet

PT Fuel Pump

Remove and clean fuel pump filter screen at each “C’” Check. To clean filter screen:

1. Loosen and remove cap (1, Fig. 2-33) and “O” ring (2), spring (3). Lift out filter screen assembly (4).

2. Clean screen and magnet in cleaning solvent and dry with compressed air.

3. Replace screen retainer and install filter screen assembly in fuel pump with hole down. Replace spring on top of filter screen assembly.

4. Replace cap and “O” ring; tighten to 20 to 25 ft-lbs [2.8 to 3.5 kg m].

PT (type G) Fuel Pump With MVS Governor

1. Remove filter cap (1, Fig. 2-34) and dynaseal (2) from governor housing.

2. Remove “O” ring retainer (3), “O” ring (4), screen (5) and spring (6) from filter cap.

3. Using a screwdriver or wire hook, remove bottom screen and magnet assembly (7) from fuel pump housing. Remove screen retainer.

4. Clean screen and magnet in cleaning solvent and dry with compressed air.

5. Install screen retainer and place bottom screen assembly in fuel pump housing with removable end up.

6. Install spring, large oil first, in filter cap; install upper screen, closed end first, in cap and snug against spring.

8. Install filter cap and dynaseal in governor housing; tighten cap to 20 to 25 ft-lb [2.8 to 3.5 kg m] with torque wrench and screwdriver adapter.
Check Fuel Manifold Pressure

Assurance of correct governed speed is necessary before any other fuel pump checks are attempted. Use an accurate tachometer or revolution counter. Use of a dynamometer makes determining rated speed easy. If no dynamometer is used, take a reading of the no-load maximum speed. Allow 10% above the rated speed as a maximum governed speed. Example: 2100 rpm rated, 2310 rpm maximum.

There may be some variation in maximum governed speed from various causes:

1. Air compressor pumping.
2. Generator/alternator carrying high charging rate.
3. Any auxiliary load such as power-steering pump, air-conditioning compressor, etc.
4. Variations in governor characteristics make small difference in maximum governed speed between different engines. Such variations are of small importance in most applications.

Note: Injectors must be adjusted to proper specifications before taking fuel manifold pressure readings.

5. Check maximum fuel manifold pressure with ST-435, Fig. 2-35. Remove 1/8 inch pipe plug from side of fuel shut-off valve on top of fuel pump. Connect the gauge line in pipe plug hole.
6. Remove linkage from the throttle lever. This will allow throttle to be operated by hand.

Caution: On turbocharged engines with aneroids, temporarily disconnect aneroid, inlet line and plug hole, to reach maximum fuel pressure during the short acceleration period.

7. Start the engine. Run long enough to purge air from the pump. Loosen the gauge end of pressure line and bleed air from line.
8. Watch gauge closely and snap throttle fully open. The gauge hand will hit a maximum value, then immediately drop back as the governor takes control.
9. Compare the maximum value with previous readings taken to determine if fuel readings are satisfactory. Normally this check is only taken if there is a suspected loss of power.
10. Remove plug and reconnect aneroid to fuel pump, remove air line from intake manifold to aneroid and check "no air" pressure.

Note: "No air" pressures are given in Fuel Pump Calibration, Bulletin No. 983725. Check with a Cummins Distributor.

11. Always make above checks on a hot engine.

Check Vibration Damper Alignment

Damper hub (1, Fig. 2-36) and inertia member (2) are stamped with an index mark (3) to permit detection of movement between the two components.

There should be no indication of relative rotation between hub and inertia member. Check for extrusion of rubber particles between hub and inertia member.

Lubricate Water Pump and Idler Pulley

Caution: Prior to adding lubricant to water pump and idler pulley, remove pipe plugs (if used) and check type of lubricant used. Do not mix lubricants.
Assemblies Lubricated With Grease (Every 2nd C Check)

1. Install grease fitting (if removed), apply grease gun, give one "shot" of grease or until grease appears at relief fitting (if used).

2. Do not overfill; overheating and bearing failure will result. If disassembled, pack bearings and fill 1/2 to 2/3 capacity, see Section 3 for Grease Specifications.

Assemblies Lubricated With SAE 90 Lubricant

1. If it is determined lubricant should be added to water pump or idler pulley, add SAE 90 Lubricant to level of drain hole. Replace pipe plugs.

2. At rebuild period, water pumps and idlers using SAE 90 Lubricant should be cleaned thoroughly. Prepack bearings and fill cavity 1/2 to 2/3 full with grease listed in Specifications, Section 3.

3. After lubrication is complete, replace both pipe plugs.

Clean Complete Oil Bath Air Cleaner

Steam

Steam clean the oil bath air cleaner main body screens. Direct the steam jet from the air outlet side of the cleaner to wash dirt out in the opposite direction of air flow.
Solvent-Air Cleaning

Solvent-bath cleaning requires a 55-gallon drum and a source of air pressure. Any good commercial solvent may be used.

1. Steam clean exterior of cleaner.
2. Remove air cleaner oil cup.
3. Clamp hose with air line adapter to air cleaner outlet.
4. Submerge air cleaner in solvent.
5. Introduce air into unit at 3 to 5 psi [0.2 to 0.4 kg/sq cm] and leave in washer 10 to 20 minutes.
6. Remove cleaner from solvent and steam clean thoroughly to remove all traces of solvent.
7. Dry thoroughly with compressed air.

Caution: Failure to remove solvent may cause engine to overspeed until all solvent is sucked from cleaner.

8. If air cleaner is to be stored, dip in lubricating oil to prevent rusting of screens.

Note: If screens cannot be thoroughly cleaned by either method, or if body is pierced or otherwise damaged, replace with new air cleaner.

Check Alternator/Generator And Cranking Motor Brushes And Commutators

Failure of an alternator/generator or cranking motor may cause unit downtime and nearly always result in expensive replacement.

1. Inspect terminals for corrosion and loose connections, Fig. 2-41, and wiring for frayed insulation. Check mounting bolts for tightness and check belt for alignment, proper tension and wear.

2. Slip rings and brushes can be inspected through alternator end frame assembly. If slip rings are dirty, they should be cleaned with 400-grain or finer polishing cloth.

Note: Never use emery cloth to clean slip rings. Hold polishing cloth against slip rings with alternator in operation and blow away all dust after cleaning operation.

3. Check alternator bearings for wear. Shaft will be excessively loose if bearings are worn.

4. If brushes are worn close to the holder, the alternator must be removed and sent to manufacturer’s rebuild station.

Lubricate Fan Hub

Caution: Prior to adding lubricant to fan hub, remove pipe plug and check type of lubricant used.

Assemblies Lubricated With Grease

1. Remove pipe plugs, install grease fitting (1, Fig. 2-42) in fan hub. Give one “shot” (approx. 1 tablespoon) each second “C” Check.

Note: After greasing fan hub, remove grease fittings and install pipe plugs.

2. Completely disassemble, clean and inspect at each “D” Check.

3. If fan hub has no provisions for greasing, disassemble, clean and inspect each second “C” Check.
Assemblies Lubricated With SAE 90 Gear Lubricant Or SAE 30 Engine Oil

1. Check level of lubricant by turning hub pulley until one filler hole is in horizontal (90 deg, from vertical) position. Allow lubricant to “settle-out” and remove pipe plugs; if lubricant flows from open hole, reinstall pipe plug.

2. If lubricant level is low, drain and refill 1/2 full or until oil comes from drain hole with SAE 30 lubricating oil; do not overfill. Replace pipe plugs.

Definition Of “Cold Set”

Engine must have reached a stabilized temperature (oil temperature to be within 10 deg. F of ambient air temperature). Up to 4 hours may be required to reach this condition on engines which have operated at a high load immediately prior to shut down.

Definition Of “Hot Set”

1. Set injectors and valves immediately after the engine has reached normal stabilized operating oil temperature.

2. If oil temperature gauge is unavailable, set injectors and valves immediately after engine has operated at rated speed and load or at high idle for a period of 20 minutes.

Valve Set Mark Alignment (V-903 Series)

Bar crankshaft in direction of rotation until No. 1 “VS” mark appears on the vibration damper crankshaft pulley or accessory drive pulley as used. See Fig. 2-44 for location of valve set marks. In this position, both intake and exhaust valves must be closed for cylinder No. 1; if not, advance crankshaft one revolution. See Fig. 2-45 and Table 2-3.

Table 2-3: Engine “V” Series Firing Order

| Right Hand | V8 | 1-5-4-8-6-3-7-2 |
| Right Hand | V6 | 1-4-2-5-3-6 |

Note: Once familiar with injector and valve adjustment, start at any cylinder and follow firing order to make adjustments.

Adjust Injectors And Valves

It is essential that injectors and valves be in correct adjustment at all times for the engine to operate properly. One controls engine breathing; the other controls fuel delivery to the cylinders.

Final operating adjustments must be made using correct values as stated.

Temperature Settings

The following temperature conditions provide the necessary stabilization of engine components to assure accurate settings.
Before adjustments tighten injector, hold down capscrew to 30 to 35 ft-lbs [4.1 to 4.8 kg m] torque.

Note: Do not use fan to rotate engine. Remove key, insert hex drive and press inward until baring gear engages drive gear, then advance. Fig. 2-46. After completion of adjustment, be sure drive retracts and install key into safety lock groove.

V-903 And VT-903 Injector Adjustment,
Using Dial Indicator Method

This method involves adjusting injector plunger travel with an accurate dial indicator rather than tightening the adjusting screw to a specified torque.

The "indicator method" eliminates errors in adjustment caused by friction in the screw threads and distortion from overtightening the adjusting screw locknut. A check can be made of the adjustment without disturbing the locknut or screw setting. The valves can also be checked or set while adjusting the injectors by this method. See Table 2-4 for specifications.

Note: Values listed in Table 2-4 are to be used for either "Cold Set" or "Hot Set".

Table 2-4: Adjustment Limits Using Indicator Method Of Adjustment — Inch [mm]

<table>
<thead>
<tr>
<th>Injector Plunger Travel Adjustment Value [Inch]</th>
<th>Reset Limit [Inch]</th>
<th>Valve Clearance Intake [Inch]</th>
<th>Valve Clearance Exhaust [Inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.180 to 0.181 [4.57 to 4.60]</td>
<td>0.179 to 0.182 [4.55 to 4.62]</td>
<td>0.012 [0.30]</td>
<td>0.025 [0.64]</td>
</tr>
</tbody>
</table>

The timing mark location (Fig's. 2-47 and 2-48) used with the dial indicator method of setting injectors and valves is not the same as used with injector settings made with a torque wrench.

The "VS" (valve set) marks on the vibration damper or rear accessory drive pulley are used when setting the injectors by the indicator method, but a new indicator mark location is used on the front cover or on the accessory drive support. See Fig. 2-47 and 2-48.

When using the indicator method, the "VS" (valve set) mark on the damper is aligned with the front cover capscrew 135 deg. counterclockwise from the timing mark. Newer engines are equipped with a pointer under the capscrew. Fig. 2-47. The valve set mark on the accessory drive pulley is aligned with the accessory drive support capscrew 135 deg. clockwise from the current timing mark. Newer engines have a pointer cast on accessory drive support. See Fig. 2-48. Alignment, in both cases, should be held to one-half inch [12.70 mm] of the capscrew.

Using regular engine baring device (Fig. 2-46), rotate engine in direction of rotation until "VS" mark for cylinder 2-8 is aligned with appropriate capscrew or pointer. In this position both the intake and exhaust valve rocker levers for number 2 cylinder should be free and can be moved up and down. If not, bar engine another 360 deg. in direction of rotation and realign the 2-8 "VS" mark with the capscrew.
Do not use fan to rotate engine.

Note: No. 2 cylinder is selected for purpose of illustration only. Any other cylinder could be used, if so desired.

1. Set up the ST-1170 Indicator Support with the indicator extension atop the injector plunger flange at No. 2 cylinder, Fig. 2-49.

2. Make sure that the indicator extension is secure in indicator stem and not against the rocker lever.

3. Using ST-1251 Actuator, Fig. 2-50, bar the lever forward until injector plunger is bottomed in cup to squeeze oil film from between plunger and cup.

4. Allow the injector plunger to rise and then bottom again and set indicator at zero (0). We recommend lever be released and plunger bottomed again to check setting.

5. Release the lever completely, indicator should show a total reading as indicated in Table 2-4. (Use proper value depending if new adjustment or reset check.) Adjust to correct tolerance as necessary.

6. Tighten the adjusting screw locknut to 30 to 40 ft-lbs [4.1 to 5.5 kg m] and actuate the injector plunger several times as a check of the adjustment. Tighten to 25 to 35 ft-lbs [3.5 to 4.8 kg m] when using ST-669 Adapter on torque wrench.

7. Adjust intake and exhaust valve overlap to valve clearances given in Table 2-4. Torque adjusting screw locknuts to 30 to 40 ft-lbs [4.1 to 5.5 kg m] or 25 to 35 ft-lbs [3.5 to 4.8 kg m] when using a ST-669 Adapter.
8. Bar engine in direction of engine rotation until 1-6 "VS" mark aligns with the new set mark and adjust cylinder 1. Continue through the firing order until all cylinders are adjusted. For engine firing order see Table 2-3.

Injector Plunger Adjustment Using Torque Method, V-378, V-504, V-555 C.I.D. Series Engines

Valve Set Mark Alignment

Turn crankshaft in direction of rotation until a "VS" mark appears on the vibration damper, crankshaft pulley or accessory drive pulley. See Fig. 2-51 for location of valve set marks. In this position, both intake and exhaust valves must be closed for that cylinder; if not, advance crankshaft one revolution. See Fig. 2-52, Fig. 2-45 and Table 2-3 for firing order.

Before adjusting injector, tighten injector hold-down capscrew to 30 to 35 ft-lbs [4.1 to 4.8 kg m] torque.

The injector plungers of all engines must be adjusted with an inch-pound torque wrench to a definite torque setting, a Snap on Model TE-12 or equivalent torque wrench and a screwdriver adapter can be used for this adjustment, Fig. 2-53.

1. Turn adjusting screw down until plunger contacts cup. Advance an additional 15 degrees to squeeze oil from cup.

2. Loosen adjusting screw one turn, then, using a torque wrench calibrated in inch-pound and a screwdriver adapter, tighten the adjusting screw to values shown in Table 2-5 for cold setting and tighten the locknut.

Note: Values listed in Tables 2-5 and 2-7 are to be used for either "Cold Set" or "Hot Set".

Table 2-5: Injector Plunger Adjustment Torque

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-378, 504, 555</td>
<td>60 inch-lb [0.7 kg m]</td>
</tr>
</tbody>
</table>

3. Hold injector adjusting screw and tighten injector locknut to values indicated in Table 2-6. When ST-69 Adapter is used, nut torque is reduced to compensate for additional torque arm length, Fig. 2-54.

Note: If cylinder head gasket or any components of actuating train have been replaced, engine must be started and brought to operating temperature, then allowed to cool thoroughly. Cylinder head capscrews must be retorqued. See Shop Manual, Injector plungers should then be reset to values listed above.
Table 2-6: Injector And Valve Locknut Torque
(All Models)

<table>
<thead>
<tr>
<th>With ST-669</th>
<th>Without ST-669</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 to 35 ft-lbs [3.5 to 4.8 kg m]</td>
<td>30 to 40 ft-lbs [4.1 to 5.5 kg m]</td>
</tr>
</tbody>
</table>

Crosshead Adjustment

1. Loosen valve crosshead adjusting screw locknut and back off screw one turn.

2. Use light finger pressure at rocker lever contact surface to hold crosshead in contact with valve stem (without adjusting screw).

3. Turn down crosshead adjusting screw until it touches valve stem. Fig. 2-55.

4. Hold adjusting screw in this position and torque locknut to 25 to 30 ft-lbs [3.5 to 4.1 kg m].

Note: Insure that crosshead retainers on exhaust valves (if used) are positioned equally on both sides of spring over crossheads and valve springs properly.

5. Check clearance between crosshead and valve spring retainer with wire gauge, there must be a minimum of 0.025 inch [0.64 mm] clearance at this point.

Valve Adjustment

The same engine position used in adjusting injectors is used for setting intake and exhaust valves.

Table 2-7: Valve Clearance — Inch [mm]

<table>
<thead>
<tr>
<th>Intake Valves Set</th>
<th>Exhaust Valves Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-378, 504, 555 Engines</td>
<td></td>
</tr>
<tr>
<td>0.012 [0.30]</td>
<td>0.022 [0.56]</td>
</tr>
</tbody>
</table>
2. Always make final valve adjustment after injectors are adjusted.

Injector And Valve Adjustment Using ST-1170 Dial Indicator Method NH-NT Series

This method involves adjusting injector plunger travel with an accurate dial indicator rather than tightening the adjusting screw to a specified torque. A check can be made of the adjustment without disturbing the locknut or screw setting. The valves can also be checked or set while adjusting the injectors by this method. See Table 2-8.

Temperature conditions described as “Cold Set” or “Hot Set” (Page 2-25) must be observed when recheck is being performed. If travel exceeds recheck values, adjust to proper value shown in “Adjustment Value” column. Check and/or adjust valves as necessary.

Before adjusting injectors, torque cylindrical injector, hold-down capscrews in alternate steps to 10 to 12 ft-lbs [1.4 to 1.7 kg m]. With flange injectors torque hold-down capscrews in alternate steps to 12 to 14 ft-lbs [1.7 to 1.9 kg m]. Tighten fuel inlet and drain connections to 20 to 25 ft-lbs [2.8 to 3.5 kg m] in flange injectors.

Check Plunger Free Travel (Engines Without Injector Adjustment Procedure Decal)

In order to prevent excessive loading of injector actuating train and possible failure, “Plunger Free Travel” MUST be checked as follows:

1. Back injector adjusting screw out 1-1/2 full turns from normal operating position, tighten locknut.

2. With ST-1170 Dial Indicator extension on injector plunger top, bar engine and record total amount of each plunger travel. This is called “Plunger Free Travel” and MUST NOT exceed 0.206 inch [5.23 mm] on any one (1) cylinder of engine on which dial indicator method of adjustment is to be used.

Note: On engines with Plunger Free Travel exceeding 0.206 inch [5.23 mm] the Torque Method of adjustment must be used unless component changes (rocker levers and/or cam followers) are made which will allow 0.206 inch [5.23 mm] limit of Free Travel to be obtained.

Maintenance Adjustment

The appropriate check values in Table 2-9 are applicable to engines which have operated long enough to warrant checking of injector setting and valve clearance.

Injector And Valve Adjustment

Note: Jacobs Brakes must be removed from engines, so equipped, for adjustment of injectors and valves to appropriate values as stated under “Hot” or “Cold” set.

1. Bar engine until “A” or 1-6 “VS” mark on pulley, Fig. 2-57, is aligned with pointer on gear case cover. In this position, both valve rocker levers for cylinder No. 5 must be free (valves closed), Injector plunger for cylinder No. 3 must be at top of travel; if not, bar engine 360 deg., realign marks with pointer.

2. Set up ST-1170 Indicator Support with indicator extension on injector plunger top at No. 3 cylinder, Fig. 2-58. Make sure indicator extension is secure in indicator stem and not against rocker lever.

Note: Cylinder No. 3 for injector setting and cylinder No. 5 for valve setting are selected for illustration purposes only. Any cylinder combination may be used as a starting point, see Table 2-8.

Table 2-8: Injector and Valve Set Position

<table>
<thead>
<tr>
<th>Bar in Direction</th>
<th>Pulley Position</th>
<th>Set Cylinder Injector Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A or 1-6VS</td>
<td>3</td>
</tr>
<tr>
<td>Adv. To</td>
<td>B or 2-5VS</td>
<td>6</td>
</tr>
<tr>
<td>Adv. To</td>
<td>C or 3-4VS</td>
<td>2</td>
</tr>
<tr>
<td>Adv. To</td>
<td>A or 1-6VS</td>
<td>4</td>
</tr>
<tr>
<td>Adv. To</td>
<td>B or 2-5VS</td>
<td>1</td>
</tr>
<tr>
<td>Adv. To</td>
<td>C or 3-4VS</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2-9: Uniform Plunger Travel Adjustment Limits

<table>
<thead>
<tr>
<th>Oil Temp.</th>
<th>Injector Plunger Travel Inch [mm]</th>
<th>Valve Clearance Inch [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adj. Value</td>
<td>Recheck Limit</td>
</tr>
<tr>
<td>Alumin. Rocker Housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>0.170</td>
<td>0.169 to 0.171</td>
</tr>
<tr>
<td></td>
<td>[4,32]</td>
<td>[4,29 to 4,34]</td>
</tr>
<tr>
<td>Hot</td>
<td>0.170</td>
<td>0.169 to 0.171</td>
</tr>
<tr>
<td></td>
<td>[4,32]</td>
<td>[4,29 to 4,34]</td>
</tr>
<tr>
<td>Cast Iron Rocker Housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>0.175</td>
<td>0.174 to 0.176</td>
</tr>
<tr>
<td></td>
<td>[4,45]</td>
<td>[4,42 to 4,47]</td>
</tr>
<tr>
<td>Hot</td>
<td>0.175</td>
<td>0.174 to 0.176</td>
</tr>
<tr>
<td></td>
<td>[4,45]</td>
<td>[4,42 to 4,47]</td>
</tr>
</tbody>
</table>

3. Using ST-1193 Rocker Lever Actuator, Fig. 2-59, or equivalent, bar lever toward injector until plunger is bottomed to squeeze oil film from cup. Allow injector plunger to rise, bottom again, set indicator at zero (0). Check extension contact with plunger top.
4. Bottom plunger again, release lever; indicator must show travel as indicated in Table 2-9 (use proper value depending if adjustment or recheck). Adjust as necessary.

Note: Before adjusting injectors and valves be sure to determine if rocker housings are Cast Iron or Aluminum and use appropriate setting.

5. If loosened, tighten locknut to 30 to 40 ft-lbs [4,1 to 5,5 kg m] and actuate injector plunger several times as a check of adjustment. Tighten to 25 to 35 ft-lbs [3,5 to 4,8 kg m] when using ST-669 Adapter.

Caution: Before checking or setting valves, be sure crossheads are adjusted.

6. Adjust valves on cylinder No. 5 to values in Table 2-9. Torque locknuts to same value as injectors. Move to next cylinder as indicated in Table 2-8 and repeat adjustment.

7. Apply Injector Adjustment Decal to frontmost plain rocker housing cover if not previously installed.

Adjustment Of Engine on which Head Gasket and/or Rocker Housing Gasket has been replaced.

Adjust injectors and valves using appropriate values in the "Cold Set" column, See Table 2-9. The engine must operate for approximately 1 hour at rated speed and load to allow stability of structural components as affected by the gasket replacement. Recheck injectors and valves.

Note: Readjustment after 1 hour operation is necessary to assure lowest smoke potential and avoid excessive injector train loads.

Adjust Injectors And Valves
NH,NT And C Series (Torque Method)

It is essential that injectors and valves be in correct adjustment at all times for the engine to operate properly. One controls engine breathing; the other controls fuel delivery to the cylinders.

Final operating adjustments must be made using correct values for the actual temperature of the engine.

Before adjusting injectors, torque cylindrical injector, hold-down capscrews in alternate steps to 10 to 12 ft-lbs [1.4 to 1.7 kg m]. With flange injectors torque hold-down capscrews in alternate steps to 12 to 14 ft-lbs [1.7 to 1.9 kg m]. Tighten fuel inlet and drain connections to 20 to 25 ft-lbs [2.8 to 3.5 kg m] in flange injectors.

Timing Mark Alignment

1. If used, pull compression release lever back and block in open position while barring engine, this allows the
crankshaft to be rotated without working against compression.

2. Loosen the injector rocker lever adjusting nut on all cylinders. This will aid in distinguishing between cylinders adjusted and not adjusted.

3. Bar engine in direction of rotation until a valve set mark (1, Fig. 2-60 and 2-61) aligns with the boss (2) on the gear case cover. Example: A or 1-6 "VS". This location is marked with a notch in the drive pulley.

4. Check the valve rocker levers on the two cylinders aligned as indicated on pulley (example: 1 and 6 cylinders for A or 1-6 "VS"). On one cylinder of the pair, both rocker levers will be free and valves closed, this is cylinder to be adjusted.

5. Adjust injector plunger first, then crossheads and valves to clearances indicated in the following paragraphs.

6. For firing order see Table 2-10.

7. Continue to bar engine to next "VS" marks and adjust each cylinder in firing order.

<table>
<thead>
<tr>
<th>Table 2-10: Engine Firing Order — Inline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Hand Rotation</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>1-5-3-6-2-4</td>
</tr>
</tbody>
</table>

Note: Only one cylinder is aligned at each mark. Two complete revolutions of the crankshaft are required to adjust all cylinders.

Injector Plunger Adjustment — Torque Method

The injector plungers of all engines must be adjusted with an inch-pound torque wrench to a definite torque setting. Snap-On Model TE-12 or equivalent torque wrench and a screwdriver adapter can be used for this adjustment. See Fig. 2-62.

1. Turn adjusting screw down until plunger contacts cup and advance an additional 15 degrees to squeeze oil from cup.

2. Loosen adjusting screw one turn; then, using a torque wrench calibrated in inch-pounds and a screwdriver adapter, tighten the adjusting screw to values shown in Table 2-11 and tighten the locknut to 30 to 40 ft-lbs (4.1 to 5.5 kg m) torque. If ST-669 torque wrench adapter is used, torque to 25 to 35 ft-lbs (3.5 to 4.8 kg m).
Table 2-11: Injector Adjustment (Oil Temperature)

<table>
<thead>
<tr>
<th></th>
<th>Cold Set</th>
<th>Hot Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH and NT Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast Iron Rocker Housing</td>
<td>48 inch-lb [0.6 kg m]</td>
<td>72 inch-lb [0.8 kg m]</td>
</tr>
<tr>
<td>Aluminum Rocker Housing</td>
<td>72 inch-lb [0.8 kg m]</td>
<td>72 inch-lb [0.8 kg m]</td>
</tr>
<tr>
<td>C Series</td>
<td>48 inch-lb [0.6 kg m]</td>
<td>60 inch-lb [0.7 kg m]</td>
</tr>
</tbody>
</table>

Crosshead Adjustment

Crossheads are used to operate two valves with one rocker lever. The crosshead adjustment is provided to assure equal operation of each pair of valves and prevent strain from misalignment.

The crosshead adjustment changes as a result of valve seat wear during engine operation. Make sure crossheads are adjusted before adjusting valve rocker levers.

1. Loosen valve crosshead adjusting screw locknut and back off screw (4, Fig. 2-63) one turn.

2. Use light finger pressure at rocker lever contact surface (1) to hold crosshead in contact with valve stem (2) (without adjusting screw).

3. Turn down crosshead adjusting screw until it touches valve stem (3).

4. With new crossheads and guides, advance setscrew an additional one-third of one hex (20 deg.) to straighten stem on its guide (5) and compensate for slack in threads. With worn crossheads and guides, it may be necessary to advance screw as much as 30 deg. to straighten stem on its guide.

5. Using ST-669 Torque Wrench Adapter, tighten locknuts to 22 to 26 ft-lbs [3 to 3.6 kg m]. If ST-669 is not available, hold screws with screwdriver and tighten locknuts to 25 to 30 ft-lbs [3.5 to 4.1 kg m].

6. Check clearance between crosshead and valve spring retainer with wire gauge. There must be a minimum of 0.025 inch [0.64 mm] clearance at this point.

Valve Adjustment — Torque Method

The same engine position used in adjusting injectors is used for setting intake and exhaust valves.

1. While adjusting valves, make sure that the compression release, on those engines so equipped, is in running position.

2. Loosen locknut and back off the adjusting screw. Insert feeler gauge between rocker lever and crosshead. Turn the screw down until the lever just touches the gauge and lock the adjusting screw in this position with the locknut. Fig. 2-64. Tighten locknut to 30 to 40 ft-lbs [4.1 to 5.5 kg m] torque. When using ST-669 torque to 25 to 35 ft-lbs [3.5 to 4.8 kg m].

3. Always make final valve adjustment at stabilized engine lubricating oil temperature. See Table 2-12 for appropriate valve clearances.
Table 2-12: Valve Clearance — Inch [mm]

<table>
<thead>
<tr>
<th>Intake Valves</th>
<th>Exhaust Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Set</td>
<td>Hot Set</td>
</tr>
<tr>
<td>NH and NT Series</td>
<td></td>
</tr>
<tr>
<td>Aluminum Rocker Housing</td>
<td></td>
</tr>
<tr>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>[0.36]</td>
<td>[0.36]</td>
</tr>
<tr>
<td>Cast Iron Rocker Housing</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td>[0.41]</td>
<td>[0.36]</td>
</tr>
<tr>
<td>C Series</td>
<td></td>
</tr>
<tr>
<td>0.017</td>
<td>0.015</td>
</tr>
<tr>
<td>[0.43]</td>
<td>[0.38]</td>
</tr>
</tbody>
</table>

Change Aneroid Oil And Replace Breather

At each "C" Check, remove fill plug (1, Fig. 2-65) and drain plug (2), allow aneroid to drain. Replace drain plug (2), fill aneroid with clean engine lubricating oil. Replace fill plug (1). Remove and replace aneroid breather (3).

Check Aneroid Adjustment And Check Bellows

Adjustment

Normally, no adjustment of the aneroid is required; however, if smoke is evident and all other engine adjustments have been checked, back out adjusting screw (4, Fig. 2-65). If screw must be backed out until acceleration is slow, have unit checked by a Cummins Distributor.

Note: If smoke is excessive after 15 seconds of full throttle operation, aneroid is not at fault, have fuel system and turbocharger checked.

If during Fuel Manifold Pressure Check, Steps 5 through 11, Page 2-22, it is determined that aneroid bellows should be replaced, refer to Bulletin No. 983725 for complete rebuild instructions. Rebuild and Calibration must be performed by a Cummins Distributor.

Check Exhaust Back Pressure

1. When engine pistons must act against a back pressure in exhaust system to expel exhaust gas, usable output of engine is lowered; since air-fuel ratio will be reduced because of incomplete scavenging of cylinder, fuel economy is reduced and exhaust temperatures will increase. Although turbocharged engines are affected to a lesser degree that naturally aspirated engines due to positive pressure in intake manifold, it is essential exhaust system for all engines be designed to offer least possible restriction to exhaust flow.

2. High pressure indicates restriction caused by foreign objects, excessive bends or small size of piping. The lowest pressure obtainable is desired.

3. If exhaust back pressure exceeds those values listed below, early engine failure and poor performance may be expected.

4. Maximum permissible back pressure for V-378, V-504 and V-555 Series is 3 inches [76.2 mm] Hg or 40.8 inches [103.6 cm] of water for all naturally aspirated engines.

All Other Models

a. Naturally Aspirated: 2.0 inches [50.9 mm] Hg or 27 inches [68.6 cm] water.

b. Turbocharged: 2.5 inches [63.5 mm] Hg or 34 inches [86.4 cm] water.

Cummins Distributors are equipped with special tools to check exhaust back pressure. If back pressure is too high check entire exhaust system for restrictions.

Check For Oil Leaks At Supercharger

Remove supercharger outlet connection and visually check ends of the rotor and case for evidence of oil leakage from supercharger seals. Rotor will always show some oil from the vapor tube that is connected to the cylinder head cover.

Only the appearance of "wet" oil at ends of the rotors and excessive oil consumption should be cause for changing supercharger seals. Check supercharger connections for leaks and correct if necessary.
‘D’ Maintenance Checks

At each ‘D’ Maintenance Check, perform all ‘A’, ‘B’ and ‘C’ Checks in addition to those following. Most of these checks should be performed by a Cummins Distributor or Dealer and where Cummins Shop Manuals are available for complete instructions.

Clean And Calibrate Injectors

Clean and calibrate injectors regularly to prevent restriction of fuel delivery to combustion chambers. Because of the special tools required for calibration, most owners and fleets find it more economical to let a Cummins Distributor do the cleaning and calibration operations.

To clean and calibrate injectors, refer to Bulletin No. 963536 and revisions thereto.

Check Fuel Pump Calibration

Check fuel pump calibration on engine if required. See the nearest Cummins Distributor or Dealer for values.

Clean Turbocharger Compressor Wheel And Diffuser

Keep the compressor wheel and diffuser clean for best turbocharger performance. Any buildup of dirt on the compressor wheel will choke off air flow and cause rotor imbalance.

At every ‘D’ Check, clean the compressor wheel and diffuser. Refer to pertinent Turbocharger Manual for specific instructions.

Check Turbocharger Bearing Clearance

Check bearing clearances every ‘D’ Check. This can be done without removing the turbocharger from the engine, by using a dial indicator to indicate end-play of the rotor shaft and a feeler gauge to indicate radial clearance, Fig. 2-66.

Checking Procedure

1. Remove exhaust and intake piping from the turbocharger to expose ends of rotor assembly.

2. Remove one cap screw from the front plate (compressor wheel end) and replace with a long cap screw. Attach an indicator to the long cap screw and register indicator point on the end of rotor shaft. Push the shaft from end-to-end, making note of total indicator reading. Move indicator point to the end of the shaft and check end-play of rotor assembly. Refer to Turbocharger Manual.

3. Check radial clearance on compressor wheel only.

4. If end clearance exceeds limits shown in Specific Bulletin, remove turbocharger from engine and replace with a new or rebuilt unit.

Inspect/Install Rebuilt Unit As Necessary

At this time the following assemblies should be inspected and rebuilt as necessary in a well-equipped shop by mechanics thoroughly familiar with worn replacement limits and disassembly and assembly procedures:

- Water Pump
- Fan Hub
- Lubricating Oil Pump
- Air Compressor
- Injectors
- Fuel Pump

Inspect each rebuilt unit before installing it on the engine. Be sure all units are clean and that all cap screws, nuts and bolts are tight. Install units on engine in convenient sequence; refer to Cummins Shop Manuals for correct assembly procedures.
Replace Bellows And Calibrate Aneroid

At each “D” Check replace aneroid bellows. This can be accomplished without changing aneroid settings if precautions are taken to assure that same spring and shims are reinstalled.

1. Remove flexible hose or tube from aneroid cover to intake manifold.

2. Remove lead seal or file away end of rivet type seal (if used).

3. Remove screws and aneroid cover.

4. Remove self-locking nut and retaining washer securing bellows (7, Fig. 5-9) to shaft (6) and piston (8).

5. Clean bellows sealing area on body and cover.

6. Install new bellows, align holes in bellows with corresponding holes in aneroid body. Position retaining washer over bellows and secure with self-locking nut.

7. Position cover to body; secure with flatwashers, lockwashers and fillister head screws.

8. Install new seal. Refer to Bulletin No. 983725 for sealing instructions and calibration procedure. Calibration must be performed by a Cummins Distributor on a fuel pump test stand.

9. Reinstall flexible hose or tube from aneroid cover to intake manifold.
'E' Maintenance Checks

At each 'E' Maintenance Check, perform all 'A', 'B', 'C' and 'D' Checks in addition to those following.

The 'E' Maintenance Check is often referred to as a chassis overhaul, where engine is not removed from the unit but some assemblies are rebuilt. In addition, a major inspection should be performed to determine whether engine may be operated for another service period, or whether it should be completely overhauled. Oil consumption, no oil pressure at idling, oil dilution and other signs of wear such as "blow-by" should be analyzed as part of the inspection.

Since major inspection requires partial disassembly of the engine, it should be done only in a well-equipped shop by mechanics thoroughly familiar with worn replacement limits and disassembly and assembly procedures. This information is available in all Cummins Shop Manuals which can be purchased from any Cummins Distributor.

At this period, perform all previous checks and:

Inspect Bearings
Rebuild Cylinder Head
Inspect Cylinder Liners
Replace Cylinder Liner Seals
Inspect Pistons
Inspect Connecting Rods
Replace Piston Rings
Inspect Crankshaft Journals
Inspect Camshaft
Inspect Cam Followers
Replace Front and Rear Crankshaft Seals
Replace Vibration Damper
Clean Oil Cooler

Parts which are worn beyond replacement limits at this inspection should be replaced with new or rebuilt parts or units.

If, during major inspection, it is determined that crankshaft journals or any other engine parts are worn beyond worn replacement limits, engine should be removed and completely rebuilt.

Check Engine Blow-By

Engine blow-by or escape of combustion gases past pistons and liners, is usually caused by worn or stuck piston rings, worn cylinder liners or worn pistons.

Blow-by can be detected by running the engine and observing the gas escape from the lubricating oil filler hole with cap or breather open or removed. There is always some vapor or gas escape at this point due to heated oil and piston movement, but distinct puffs indicate blow-by.

Experience and comparison with other units operating at the same speed are needed to make a conclusion as to the extent of blow-by. Normally, excessive blow-by is accompanied by oil consumption.

Cummins Distributors are equipped to check engines for blow-by under loaded conditions with special tools to determine if blow-by is excessive. Fig. 2-67.
Other Maintenance Checks

There are some maintenance checks which may or may not fall exactly into suggested maintenance schedule due to miles or hours operation but are performed once or twice each year.

Check Fan And Drive Pulley Mounting (Spring And Fall)

Check fan to be sure it is securely mounted; tighten capscrews as necessary. Check fan for wobble or bent blades.

Check fan hub and crankshaft drive pulley to be sure they are securely mounted. Check fan hub pulley for looseness or wobble; if necessary, remove fan hub and tighten the shaft nut. Tighten the fan bracket capscrews.

Clean Cooling System (Spring And Fall)

The cooling system must be clean to do its work properly. Scale in the system slows down heat absorption from water jackets and heat rejection from radiator. Use clean water that will not clog any of the hundreds of small passages in radiator or water passages in block. Clean radiator cores, heater cores, oil cooler and block passages that have become clogged with scale and sediment by chemical cleaning, neutralizing and flushing.

Chemical Cleaning

A Cummins Corrosion Resistor is the best way to insure an efficient cooling system by preventing formation of rust and scale. If rust and scale have collected, the system must be chemically cleaned. Use a good cooling system cleaner such as sodium bisulphate or oxalic acid followed by a neutralizer and flushing.

Pressure Flushing

Flush radiator and block when antifreeze is added or removed, or before installing a Corrosion Resistor on a used engine.

When pressure flushing radiator, open upper and lower hose connections and screw radiator cap on tight. Use hose connection on both upper and lower connections to make the operation easier. Attach flushing gun nozzle to lower hose connection and let water run until radiator is full. When full, apply air pressure gradually to avoid damage to core. Shut off air and allow radiator to refill; then apply air pressure. Repeat until water coming from radiator is clean.

Sediment and dirt settle into pockets in block as well as radiator core. Remove thermostats from housing and flush block with water. Partially restrict lower opening until block fills. Apply air pressure and force water from lower opening. Repeat process until stream of water coming from block is clean.

Check Hose (Spring And Fall)

Inspect oil filter and cooling system hose and hose connections for leaks and/or deterioration. Particles of deteriorated hose can be carried through cooling system or lubricating system and restrict or clog small passages, especially radiator core, and lubricating oil cooler, and slow or partially stop circulation. Replace as necessary.

Clean Electric Connections (Spring And Fall)

Hard starting is often traceable to loose or corroded battery connections. A loose connection will overwork alternator and regulator and shorten their lives.

1. Add water (distilled) to battery cells as required. Check solution level every 15 days during hot weather, every 30 days during cold weather; keep solution filled to 3/8 inch [9.53 mm] above separator plates.

2. Remove corrosion from around terminals; then coat with petroleum jelly or a non-corrosive inhibitor.

3. Keep connections clean and tight. Prevent wires and lugs from touching each other or any metal except screw terminals to which they are attached.

4. Replace broken or worn wires and their terminals.

5. Have battery tested periodically. Follow battery manufacturer's instructions for maintenance.

Check Preheater Cold-Starting Aid (Fall)

Remove 1/8 inch pipe plug from manifold, near glow plug, and check operation of preheater as described in Section 1.

Check Shutterstats And Thermatic fans (Fall)

Shutterstats and thermatic fans must be set to operate in
same range as thermostat with which they are used. Table 2-13 gives settings for shutterstats and thermatic fans as normally used. The 180 to 195 deg. F [82 to 91 deg. C] thermostats are used only with shutterstats that are set to close at 187 deg. F [86 deg. C] and open at 195 deg. F [91 deg. C].

Check Thermostats And Seals (Fall)

Remove thermostats from thermostat housings and check for proper opening and closing temperature.

Most Cummins Engines are equipped with either medium 170 to 185 deg. F [77 to 85 deg. C] or low 160 to 175 deg. F [71 to 79 deg. C] and in a few cases high-range 180 to 195 deg. F [82 to 91 deg. C] thermostats, depending on engine application.

Tighten Mounting Bolts And Nuts (As Required)

Mounting bolts will occasionally work loose and cause the supports and brackets to wear rapidly. Tighten all mounting bolts or nuts and replace any broken or lost bolts or capscrews.

Check Power Take-Off Clutch Adjustment (As Required)

If clutch does not pull, heats or operating lever jumps out, clutch must be adjusted. To adjust clutch, remove hand hole plate in housing and turn clutch until adjusting lockpin can be reached. Due to variations in clutch arrangements, check manufacturer manual for procedure.

Disengage adjusting lockpin and turn adjusting yoke or ring to right, or clockwise, until operating lever requires a distinct pressure to engage. A new clutch generally requires several adjustments until friction surfaces are worn in.

Check Crankshaft End Clearance (At Clutch Adjustment)

The crankshaft of a new or newly rebuilt engine must have end clearance as listed in Table 2-14. A worn engine must not be operated with more than the worn limit end clearance shown in the same table. If engine is disassembled for repair; install new thrust rings if wear results in end clearance in excess of value under “Worn Limit.”

<table>
<thead>
<tr>
<th>Table 2-13: Thermal Control Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Used</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thermostat</td>
</tr>
<tr>
<td>Thermatic Fan</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulating Shutter Open</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 2-14: Crankshaft End Clearance — Inch [mm]

<table>
<thead>
<tr>
<th>Engine Series</th>
<th>New Minimum</th>
<th>New Maximum</th>
<th>Worn Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, NH, NT</td>
<td>0.007 [0.18]</td>
<td>0.017 [0.43]</td>
<td>0.022 [0.56]</td>
</tr>
<tr>
<td>V-903, VT-903</td>
<td>0.005 [0.13]</td>
<td>0.015 [0.38]</td>
<td>0.022 [0.56]</td>
</tr>
<tr>
<td>V-378, V-504,</td>
<td>0.004 [0.10]</td>
<td>0.014 [0.36]</td>
<td>0.022 [0.56]</td>
</tr>
<tr>
<td>V-555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.004 [0.10]</td>
<td>0.015 [0.38]</td>
<td>0.022 [0.56]</td>
</tr>
</tbody>
</table>

The check can be made by attaching an indicator to rest against the damper or pulley, Fig. 2-69, while prying against the front cover and inner part of pulley or damper. End clearance must be present with engine mounted in the unit and assembled to transmission or converter.

Fig. 2-69, (V51918). Checking crankshaft end clearance

Caution: Do not pry against outer damper ring.
Providing and maintaining an adequate supply of clean, high-quality fuel, lubricating oil, grease and coolant in an engine is one way of ensuring long life and satisfactory performance.

Lubricating Oil

Lubricating oil is used in Cummins engines to lubricate moving parts, provide internal cooling and keep the engine clean by suspending contaminants until removed by the oil filters. Lubricating oil also acts as a combustion seal and protects internal parts from rust and corrosion.

The use of quality lubricating oil, combined with appropriate lubricating oil drain and filter change intervals, is an important factor in extending engine life. Cummins Engine Company, Inc. does not recommend any specific brand of lubricating oil. The responsibility for meeting the specifications, quality and performance of lubricating oils must necessarily rest with the oil supplier.

Oil Performance Specifications

The majority of lubricating oils marketed in North America (and many oils marketed world-wide) are designed to meet oil performance specifications which have been established by the U.S. Department of Defense and the Automobile Manufacturers Association. A booklet entitled "Lubricating Oils for Heavy Duty Automotive and Industrial Engines" listing commercially available brand name lubricants and the performance classification for which they are designed, is available from Engine Manufacturing Association, 111 East Wacker Drive, Chicago, Illinois 60601.

Following are brief descriptions of the specifications most commonly used for commercial lubricating oils.

API classification CC is the current American Petroleum Institute classification for lubricating oils for heavy duty gasoline and diesel service. Lubricating oils meeting this specification and designed to protect the engine from sludge deposits and rusting (aggravated by stop-and-go operation) and to provide protection from high temperature operation, ring sticking and piston deposits.

Table 3-1: Oil Recommendations

<table>
<thead>
<tr>
<th>Light Service Only (Stop-and-Go)</th>
<th>Naturally Aspirated Diesel Models</th>
<th>Turbocharged Diesel Models</th>
<th>All Natural Gas Models (All Service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Diesel Models</td>
<td>API Class CC</td>
<td>API Class CC/CD</td>
<td>API Class CC</td>
</tr>
<tr>
<td>API Class CC/SC 2/5</td>
<td>1.85% Maximum</td>
<td>1.85% Maximum</td>
<td>.03 to .85%</td>
</tr>
<tr>
<td>1.85% Maximum</td>
<td>Sulfated Ash Content</td>
<td>Sulfated Ash Content</td>
<td>Sulfated Ash Content</td>
</tr>
</tbody>
</table>

1. API classification CC and CD quality oils as used in turbocharged engines and API classification CC/SC quality oils as used for stop-and-go service are satisfactory for use in naturally aspirated engines.

2. API classification CC/SC and CC/CD indicate that the oil must be blended to the quality level required by both specifications. The range of oil quality permitted by the CC classification is so broad that some oils that meet the classification will not provide adequate protection (varnish and ring sticking) for engines operated in certain applications. For example, turbocharged engines require the additional protection provided by the CD classification. Engines operated in stop and go service require the additional protection provided by the SC classification.

3. A sulfated ash limit has been placed on all lubricating oils for Cummins engines because past experience has shown that high ash oils may produce harmful deposits on valves that can progress to guttering and valve burning.

4. Completely ashless oils or high ash content oils, are not recommended for use in gas engines; a range of ash content is specified.

5. SD or SE may be substituted for SC.
API classification CD is the current American Petroleum Institute classification for severe duty lubricating oils to be used in highly rated diesel engines operating with high loads. Lubricating oils which meet this specification have a high detergent content and will provide added protection against piston deposits and ring sticking during high temperature operation.

API classification SC, SD and SE were established for the Automobile Manufacturers Association. They require a sequence of tests for approval. The primary advantage of lubricating oils in these categories is low temperature operation protection against sludge, rust, combustion chamber deposits and bearing corrosion. The test procedure for these specifications are published by the American Society for Testing and Materials as STP-315.

Break In Oils

Special “Break-In” lubricating oils are not recommended for new or rebuilt Cummins Engines. Use the same lubricating oil as will be used for the normal engine operation.

Viscosity Recommendations

1. Multigraded lubricating oils may be used in applications with wide variations in ambient temperatures if they meet the appropriate performance specifications and ash content limits shown in Table 3-1. Multigraded oils are generally produced by adding viscosity index improver additives to a low viscosity base stock to retard thinning effects at operating temperatures. Poor quality multigraded oils use a viscosity index improver additive which has a tendency to lose its effectiveness after a short period of use in a high speed engine. These oils should be avoided.

2. Oils which meet the low temperature SAE viscosity standard (0 deg F [-18 deg C] carry a suffix “W”. Oils that meet the high temperature viscosity SAE standard (210 deg F [99 deg C]) as well as the low temperature carry both viscosity ratings – example 20-20W. See Table 3-2.

<table>
<thead>
<tr>
<th>Parameter (Test Method)</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Quality Level</td>
<td>API class CC/SC</td>
</tr>
<tr>
<td>SAE Viscosity Grade</td>
<td>10W-20, 10W-30, 10W-40</td>
</tr>
<tr>
<td>Viscosity @—30 deg. F. (ASTM D-445)</td>
<td>10,000 Centistokes</td>
</tr>
<tr>
<td>Pour Point (ASTM D-97)</td>
<td>At least 10 deg. F. (6 deg. C) below lowest expected ambient temperature</td>
</tr>
<tr>
<td>Ash, sulfated (ASTM D-874)</td>
<td>1.85 wt. % Maximum</td>
</tr>
</tbody>
</table>

Arctic Operations

For operation in areas where the ambient temperature is consistently below —10 deg F [-23 deg C] and there is no provision for keeping engines warm during shutdowns, the lubricating oil should meet the requirements in Table 3-3. Due to extreme operating conditions, oil change intervals should be carefully evaluated paying particular attention to viscosity changes and total base number decrease. Oil designed to meet MIL-L-10295-A, which is void, and SAE 5W oils should not be used.
Grease

Cummins Engine Company, Inc., recommends use of grease meeting the specifications of MIL-G-3545, excluding those of sodium or soda soap thickeners. Contact lubricant supplier for grease meeting these specifications.

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Temperature Performance</td>
<td></td>
</tr>
<tr>
<td>Dropping point, deg. F</td>
<td>ASTM D 2265</td>
</tr>
<tr>
<td>Bearing life, hours at 300 deg. F, 10,000 rpm</td>
<td>*FTM 331</td>
</tr>
<tr>
<td></td>
<td>350 min,</td>
</tr>
<tr>
<td></td>
<td>600 min.</td>
</tr>
<tr>
<td>Low-Temperature Properties</td>
<td>ASTM D 1478</td>
</tr>
<tr>
<td>Torque, GCM</td>
<td></td>
</tr>
<tr>
<td>Start at 0 deg. F</td>
<td>15,000 max.</td>
</tr>
<tr>
<td>Run at 0 deg. F</td>
<td>5,000 max.</td>
</tr>
<tr>
<td>Rust Protection and Water Resistance</td>
<td></td>
</tr>
<tr>
<td>Rust test</td>
<td>ASTM D 1743</td>
</tr>
<tr>
<td>Water resistance, %</td>
<td>ASTM D 1264</td>
</tr>
<tr>
<td></td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td>20 max.</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>Oil separation, %</td>
<td>*FTM 321</td>
</tr>
<tr>
<td>30 Hours @ 212 deg. F</td>
<td>5 max.</td>
</tr>
<tr>
<td>Penetration</td>
<td></td>
</tr>
<tr>
<td>Worked</td>
<td>ASTM D 217</td>
</tr>
<tr>
<td></td>
<td>250-300</td>
</tr>
<tr>
<td>Bomb Test, PSI Drop</td>
<td>ASTM D 942</td>
</tr>
<tr>
<td>100 Hours</td>
<td></td>
</tr>
<tr>
<td>500 Hours</td>
<td>10 max.</td>
</tr>
<tr>
<td></td>
<td>25 max.</td>
</tr>
<tr>
<td>Copper, Corrosion</td>
<td>*FTM 5309</td>
</tr>
<tr>
<td></td>
<td>Pass</td>
</tr>
<tr>
<td>Dirt Count, Particles/cc</td>
<td>*FTM 3005</td>
</tr>
<tr>
<td>25 Micron +</td>
<td></td>
</tr>
<tr>
<td>75 Micron +</td>
<td>5,000 max.</td>
</tr>
<tr>
<td>125 Micron +</td>
<td>1,000 max.</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Rubber Swell</td>
<td>*FTM 3603</td>
</tr>
<tr>
<td></td>
<td>10 max.</td>
</tr>
</tbody>
</table>

Caution: Do not mix grease and lubricating oil as damage to bearings may result. Excessive lubrication is as harmful as inadequate lubrication. After lubricating fan hub, replace both pipe plugs. Use of fittings will allow lubricant to be thrown out, due to rotational speed.
Fuel Oil

Cummins Diesel Engines have been developed to take advantage of the high energy content and generally lower cost of No. 2 Diesel Fuels. Experience has shown that a Cummins Diesel Engine will also operate satisfactorily on No. 1 fuels or other fuels within the following specifications.

Recommended Fuel Oil Properties:

- **Viscosity** (ASTM D-445) - Centistokes 1.4 to 5.8 @ 100 deg. F. (30 to 45 SUS)
- **Cetane Number** (ASTM D-613) - 40 minimum except in cold weather or in service with prolonged idle, a higher cetane number is desirable.
- **Sulfur Content** (ASTM D-129 or 1552) - Not to exceed 1% by weight.
- **Water and Sediment** (ASTM D-1796) - Not to exceed 0.1% by weight.
- **Carbon Residue** (Ransbottom ASTM D-524 or D-189) - Not to exceed 0.25% by weight on 10% residue.
- **Flash Point** (ASTM D-93) - At least 125 deg. for legal temperature if higher than 125 deg. F.
- **Gravity** (ASTM D-287) - 30 to 42 deg. A.P.I. at 60 deg. F. (0.815 to 0.875 sp. gr.)
- **Pour Point** (ASTM D-97) - Below lowest temperature expected.
- **Active Sulfur-Copper Strip Corrosion** (ASTM D-130) - Not to exceed No. 2 rating after 3 hours at 122 deg. F.
- **Ash** (ASTM D-482) - Not to exceed 0.02% by weight.
- **Distillation** (ASTM D-86) - The distillation curve should be smooth and continuous. At least 90% of the fuel should evaporate at less than 675 deg. F., all of the fuel should evaporate at less than 725 deg. F.
Coolant

Water should be clean and free of any corrosive chemicals such as chloride, sulphates and acids. It should be kept slightly alkaline with pH value in range of 8.0 to 9.5. Any water which is suitable for drinking can be treated as described in the following paragraphs for use in an engine.

Maintain the Cummins Corrosion Resistor on the engine. The resistor by-passes a small amount of coolant from the system via a filtering and treating element which must be replaced periodically.

<table>
<thead>
<tr>
<th>Table 3-4: Selection of Corrosion Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 15</td>
</tr>
<tr>
<td>To 30</td>
</tr>
<tr>
<td>Over 30</td>
</tr>
</tbody>
</table>

In Summer (No Antifreeze)

1. Fill system with water,

2. Install or replace corrosion resistor element (see Table 3-4) as recommended in Section 2.

In Winter (Using Antifreeze)

1. Select an antifreeze known to be satisfactory for use with chromate element of the corrosion resistor and continue to use the resistor element or;

2. If you are not sure the antifreeze is compatible with the chromate resistor element:

a. Check with nearest Cummins Distributor for list of compatible antifreezes or ask antifreeze supplier to certify his antifreeze meets tests described in following paragraphs,

b. Use only antifreeze, with compounded inhibitors, in proper percentage and follow antifreeze supplier’s recommendation to prevent corrosion,

c. In case “b,” check corrosion control by draining a sample of coolant from the system as described under “Check Engine Coolant,” Section 2.

Caution: Never use soluble oil in the cooling system when a Corrosion Resistor is being used.

Checking Antifreeze For Compatibility With Cummins Corrosion Resistor Chromate Elements

There have been several requests for information on the test to determine antifreeze-to-chromate compatibility, especially from foreign locations. The following test may be used; however, only a slight difference in antifreeze formulation can change the compatibility. The responsibility for meeting the compatibility tests, specifications, quality and performance of the antifreeze must necessarily rest with the antifreeze supplier.

The test for compatibility is made as follows:

1. Establish base solutions by:

 a. Sodium Chromate – 35,000 ppm – Add 35 grams of anhydrous sodium chromate (Na₂CrO₄) to a one liter volumetric flask and dilute to the one liter mark with distilled water.

 b. Calcium Acetate – 125 ppm as CaCO₃ – Add 0.220 grams of calcium acetate monohydrate [Ca(CHO₃COO)·H₂O] to a one liter volumetric flask and dilute to the one liter mark with distilled water.

2. Add 10 ml, (milli-liter) of the 35,000 ppm chromate solution (Step 1-a) to a centrifuge tube. (ASTM long form graduated tube. The first ml, should be divided into 1/20 ml increments.)

3. Add 40 ml, (milli-liter) of standard calcium acetate solution (Step 1-b) to the centrifuge tube.

4. Add 50 ml, (milli-liter) of the antifreeze to be tested to this centrifuge tube.

5. Stopper, with a cork, and place in the oven at 160 to 165 deg. F [71 to 74 deg. C] for 96 hours.

6. At end of 96 hours, remove and insert in the centrifuge, Centrifuge at 10,000 relative centrifugal force for 15 minutes.

Note: Relative centrifugal force (rcf) is used as a standard for specifying the centrifuge specifications.

\[
rcf = \left(\frac{rpm}{265} \right)^2 \times \text{dia. of swing}
\]

7. A solids level of 0.5 ml, (milli-liter) or less is required for the antifreeze to be compatible with chromate elements.

Make-Up Coolant Specifications

Where possible, it is recommended that a supply of make-up coolant be prepared to the following specifications, using soft water where possible and a compatible antifreeze. Chromate treatment of coolant assures constant level of concentration when coolant is added and requires no change in schedule of element replacement. See Section 2.
Capscrew Markings and Torque Values

<table>
<thead>
<tr>
<th>Current Usage</th>
<th>Much Used</th>
<th>Much Used</th>
<th>Used at Times</th>
<th>Used at Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Tensile Strength PSI</td>
<td>To 1/2–69,000 [4850,70]</td>
<td>To 3/4–120,000 [8436,00]</td>
<td>To 5/8–140,000 [9842,00]</td>
<td>150,000</td>
</tr>
<tr>
<td>[Kg/Sq Cm]</td>
<td>To 1–65,000 [3866,50]</td>
<td>To 1–115,000 [8084,50]</td>
<td>To 3/4–133,000 [9349,90]</td>
<td>[10545,00]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of Material</th>
<th>Indeterminate</th>
<th>Minimum Commercial</th>
<th>Medium Commercial</th>
<th>Best Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE Grade Number</td>
<td>1 or 2</td>
<td>5</td>
<td>6 or 7</td>
<td>8</td>
</tr>
</tbody>
</table>

Capscrew Head Markings

Manufacturer's marks may vary. These are all SAE Grade 5 (3-line).

Capscrew Body Size (Inches) — (Thread)

<table>
<thead>
<tr>
<th></th>
<th>Torque Ft-Lb [kg m]</th>
<th>Torque Ft-Lb [kg m]</th>
<th>Torque Ft-Lb [kg m]</th>
<th>Torque Ft-Lb [kg m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 – 20</td>
<td>5 [0.69]</td>
<td>8 [1.11]</td>
<td>10 [1.38]</td>
<td>12 [1.66]</td>
</tr>
<tr>
<td>5/32 – 28</td>
<td>6 [0.83]</td>
<td>10 [1.38]</td>
<td>14 [1.94]</td>
<td></td>
</tr>
<tr>
<td>5/16 – 18</td>
<td>250 [34.88]</td>
<td>660 [91.28]</td>
<td></td>
<td>990 [136.92]</td>
</tr>
</tbody>
</table>

Notes:
1. Always use the torque values listed above when specific torque values are not available.
2. Do not use above values in place of those specified in other sections of this manual; special attention should be observed when using SAE Grade 6, 7 and 8 capscrews.
3. The above is based on use of clean, dry threads.
4. Reduce torque by 10% when engine oil is used as a lubricant.
5. Reduce torque by 20% if new plated capscrews are used.
6. Capscrews threaded into aluminum may require reductions in torque of 30% or more, unless inserts are used.
Trouble Shooting

Trouble shooting is an organized study of the problem and a planned method of procedure for investigation and correction of the difficulty. The chart of the following page includes some of the problems that an operator may encounter during the service life of a Cummins Diesel Engine.

Cummins Diesel Engines

The chart does not give all the answers for correction of problems listed, but it is meant to stimulate a train of thought and indicate a work procedure directed toward the source of trouble. To use the trouble-shooting chart, find the complaint at top of chart; then follow down that column until you come to a black dot. Refer to left of dot for the possible cause.

Think Before Acting

Study the problem thoroughly. Ask these questions:

1. What were the warning signs preceding the trouble?
2. What previous repair and maintenance work has been done?
3. Has similar trouble occurred before?
4. If the engine still runs, is it safe to continue running it to make further checks?

Think Easiest Things First

Most troubles are simple and easily corrected; examples are “low-power” complaints caused by loose throttle linkage or dirty fuel filters, “excessive lube oil consumption” caused by leaking gaskets or connections, etc.

Always check the easiest and obvious things first; following this simple rule will save time and trouble.

Double-Check Before Beginning Disassembly Operations

The source of most engine troubles can be traced not to one part alone but to the relationship of one part with another. For instance, excessive fuel consumption may not be due to an incorrectly adjusted fuel pump, but instead, to a clogged air cleaner or possibly a restricted exhaust passage, causing excessive back pressure. Too often, engines are completely disassembled in search of the cause of a certain complaint and all evidence is destroyed during disassembly operations. Check again to be sure an easy solution to the problem has not been overlooked.

Find And Correct Basic Cause Of Trouble

After a mechanical failure has been corrected, be sure to locate and correct the cause of the trouble so the same failure will not be repeated. A complaint of “sticking injector plungers” is corrected by replacing the faulty injectors, but something caused the plungers to stick. The cause may be improper injector adjustment, or more often, water in the fuel.
Trouble Shooting

<table>
<thead>
<tr>
<th>CAUSES</th>
<th>COMPLAINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR SYSTEM</td>
<td></td>
</tr>
<tr>
<td>Restricted Air Intake</td>
<td></td>
</tr>
<tr>
<td>High Exhaust Back Pressure</td>
<td></td>
</tr>
<tr>
<td>Thin Air in Hot Weather or High Alt.</td>
<td></td>
</tr>
<tr>
<td>Air Leaks Between Cleaner and Engine</td>
<td></td>
</tr>
<tr>
<td>Dirty Turbocharger Compressor</td>
<td></td>
</tr>
<tr>
<td>Improper Use of Starter Aid/Air Temp.</td>
<td></td>
</tr>
<tr>
<td>FUEL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>Out of Fuel or Fuel Shut-Off Closed</td>
<td></td>
</tr>
<tr>
<td>Poor Quality Fuel</td>
<td></td>
</tr>
<tr>
<td>Air Leaks in Suction Lines</td>
<td></td>
</tr>
<tr>
<td>Restricted Fuel Lines: Stuck Drain Valve</td>
<td></td>
</tr>
<tr>
<td>External or Internal Fuel Leaks</td>
<td></td>
</tr>
<tr>
<td>Plugged Injector Spray Holes</td>
<td></td>
</tr>
<tr>
<td>Broken Fuel Pump Drive Shaft</td>
<td></td>
</tr>
<tr>
<td>Scored Gear Pump or Worn Gears</td>
<td></td>
</tr>
<tr>
<td>Loose Injector Inlet or Drain Connection</td>
<td></td>
</tr>
<tr>
<td>Wrong Injector Cups</td>
<td></td>
</tr>
<tr>
<td>Cracked Injector Body or Cup</td>
<td></td>
</tr>
<tr>
<td>Multilatered Injector Cup “O” Ring</td>
<td></td>
</tr>
<tr>
<td>Throttle Linkage or Adjustment</td>
<td></td>
</tr>
<tr>
<td>Incorrectly Assembled Idle Springs</td>
<td></td>
</tr>
<tr>
<td>Governor Weights Assembled Incorrectly</td>
<td></td>
</tr>
<tr>
<td>High-Speed Governor Set Too Low</td>
<td></td>
</tr>
<tr>
<td>Water in Fuel</td>
<td></td>
</tr>
<tr>
<td>Aneroid Check Valve Stuck Open</td>
<td></td>
</tr>
<tr>
<td>Aneroid Set Improperly</td>
<td></td>
</tr>
<tr>
<td>LUBRICATING SYSTEM</td>
<td></td>
</tr>
<tr>
<td>External and Internal Oil Leaks</td>
<td></td>
</tr>
<tr>
<td>Dirty Oil Filter</td>
<td></td>
</tr>
<tr>
<td>Faulty Cylinder Oil Control</td>
<td></td>
</tr>
<tr>
<td>Clogged Oil Drivings</td>
<td></td>
</tr>
<tr>
<td>Oil Suction Line Restriction</td>
<td></td>
</tr>
<tr>
<td>Faulty Oil Pressure Regulator</td>
<td></td>
</tr>
<tr>
<td>Crankcase Low or Out of Oil</td>
<td></td>
</tr>
<tr>
<td>Wrong Grade Oil for Weather Conditions</td>
<td></td>
</tr>
<tr>
<td>Oil Level Too High</td>
<td></td>
</tr>
<tr>
<td>COOLING SYSTEM</td>
<td></td>
</tr>
<tr>
<td>Insufficient Coolant</td>
<td></td>
</tr>
<tr>
<td>Worn Water Pump</td>
<td></td>
</tr>
<tr>
<td>Faulty Thermostats</td>
<td></td>
</tr>
<tr>
<td>Damaged Water Hose</td>
<td></td>
</tr>
<tr>
<td>Loose Fan Belts</td>
<td></td>
</tr>
<tr>
<td>Radiator Shutter Stuck Open</td>
<td></td>
</tr>
<tr>
<td>Clogged Water Passages</td>
<td></td>
</tr>
<tr>
<td>Internal Water Leaks</td>
<td></td>
</tr>
<tr>
<td>Clogged Oil Cooler</td>
<td></td>
</tr>
<tr>
<td>Radiator Core Openings Dirty</td>
<td></td>
</tr>
<tr>
<td>Air in Cooling System</td>
<td></td>
</tr>
<tr>
<td>Exterior Water Leaks</td>
<td></td>
</tr>
<tr>
<td>Insufficient Coolant Capacity</td>
<td></td>
</tr>
<tr>
<td>Coolant Temperature Low</td>
<td></td>
</tr>
<tr>
<td>OPERATION AND MAINTENANCE PRACTICES</td>
<td></td>
</tr>
<tr>
<td>Dirty Filters and Screens</td>
<td></td>
</tr>
<tr>
<td>Long Idle Periods</td>
<td></td>
</tr>
<tr>
<td>Engine Overloaded</td>
<td></td>
</tr>
<tr>
<td>Oil Needs Changing</td>
<td></td>
</tr>
<tr>
<td>Engine Exterior Caked with Dirt</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL ADJUSTMENTS OR REPAIR</td>
<td></td>
</tr>
<tr>
<td>Gasket Blow-by or leakage</td>
<td></td>
</tr>
<tr>
<td>Faulty Vibration Damper</td>
<td></td>
</tr>
<tr>
<td>Unbalanced or Loose Flywheel</td>
<td></td>
</tr>
<tr>
<td>Valve Leakage</td>
<td></td>
</tr>
<tr>
<td>Broken or Worn Piston Rings</td>
<td></td>
</tr>
<tr>
<td>Incorrect Bearing Clearances</td>
<td></td>
</tr>
<tr>
<td>Excessive Crankshaft End Clearance</td>
<td></td>
</tr>
<tr>
<td>Main Bearing Bore Out of Alignment</td>
<td></td>
</tr>
<tr>
<td>Engine Due for Overhaul</td>
<td></td>
</tr>
<tr>
<td>Damaged Main or Rod Bearings</td>
<td></td>
</tr>
<tr>
<td>Broken Tooth in Gear Train</td>
<td></td>
</tr>
<tr>
<td>Excessive Gear Backlash</td>
<td></td>
</tr>
<tr>
<td>Misalignment Engine to Driven Unit</td>
<td></td>
</tr>
<tr>
<td>Loose Mounting Bolts</td>
<td></td>
</tr>
<tr>
<td>Incorrect Valve and Injection Timing</td>
<td></td>
</tr>
<tr>
<td>Worn or Scored Liners or Pistons</td>
<td></td>
</tr>
<tr>
<td>Injectors Need Adjustment</td>
<td></td>
</tr>
</tbody>
</table>

- Correct and complete trouble shooting chart for various engine complaints and causes.
Operating Principles

The Cummins Diesel Engine

Cummins Diesel Cycle

Cummins Diesel Engines differ from spark-ignited engines in a number of ways. Compression ratios are higher, the charge taken into combustion chamber during the intake stroke consists of air only - with no fuel mixture. Cummins injectors receive low-pressure fuel from the fuel pump and deliver it into individual combustion chambers at the proper time, in equal quantity and atomized condition for burning. Ignition of fuel is caused by heat of compressed air in the combustion chamber.

It is easier to understand the function of engine parts if it is known what happens in the combustion chamber during each of the four piston strokes of the cycle. The four strokes and order in which they occur are: Intake Stroke, Compression Stroke, Power Stroke and Exhaust Stroke.

In order for the four strokes to function properly, valves and injectors must act in direct relation to each of the four strokes of the piston. The intake valves, exhaust valves and injectors are camshaft actuated, linked by tappets or cam followers, push rods, rocker levers and valve crossheads. The camshaft is gear driven by the crankshaft gear, thus rotation of the crankshaft directs the action of the camshaft which in turn controls the opening and closing sequence of the valves and the injection timing (fuel delivery).

Intake Stroke

During intake stroke, the piston travels downward; intake valves are open, and exhaust valves are closed. The downward travel of the piston allows air from the atmosphere to enter the cylinder. On turbocharged engines the intake manifold is pressurized as the turbocharger forces more air into the cylinder through the intake manifold. The intake charge consists of air only with no fuel mixture.

Compression Stroke

At the end of the intake stroke, intake valves close and piston starts upward on compression stroke. The exhaust valves remain closed.

At end of compression stroke, air in combustion chamber has been forced by piston to occupy a smaller space (depending upon engine model about one-fourteenth to one-sixteenth as great in volume) than it occupied at beginning of stroke. Thus, compression ratio is the direct proportion in the amount of air in the combustion chamber before and after being compressed.

Compressing air into a small space causes temperature of that air to rise to a point high enough for ignition of fuel.

During last part of compression stroke and early part of power stroke, a small metered charge of fuel is injected into combustion chamber.

Almost immediately after fuel charge is injected into combustion chamber, fuel is ignited by the existing hot compressed air.

Power Stroke

During the beginning of the power stroke, the piston is pushed downward by the burning and expanding gases; both intake and exhaust valves are closed. As more fuel is added and burns, gases get hotter and expand more to further force piston downward and thus adds driving force to crankshaft rotation.

Exhaust Stroke

During exhaust stroke, intake valves are closed, exhaust valves are open, and piston is on upstroke.

Upward travel of piston forces burned gases out of combustion chamber through open exhaust valve ports and into the exhaust manifold.

Proper engine operation depends upon two things - first, compression for ignition; and second, that fuel be measured and injected into cylinders in proper quantity at proper time.
Fuel System

The PT fuel system is used exclusively on Cummins Diesels. The identifying letters, "PT," are an abbreviation for "pressure-time."

The operation of the Cummins PT Fuel System is based on the principle that the volume of liquid flow is proportionate to the fluid pressure, the time allowed to flow and the passage size through which the liquid flows. To apply this simple principle to the Cummins PT Fuel System, it is necessary to provide:

1. A fuel pump to draw fuel from the supply tank and deliver it to individual injectors for each cylinder.

2. A means of controlling pressure of the fuel being delivered by the fuel pump to the injectors so individual cylinders will receive the right amount of fuel for the power required of the engine.

3. Fuel passages of the proper size and type so fuel will be distributed to all injectors and cylinders with equal pressure under all speed and load conditions.

4. Injectors to receive low-pressure from the fuel pump and deliver it into the individual combustion chambers at the right time, in equal quantities and proper condition to burn.

The PT fuel system consists of the fuel pump, supply lines, drain lines, fuel passages and injectors. Fig's, 5-1 and 5-2. There are two types of PT fuel pumps. The first type, commonly called PT (type G), is shown in Fig. 5-3. The second type, called PT (type R), is shown in Fig. 5-4.

The designations PT (type G) and PT (type R) stand for "Governor-Controlled" and the "Pressure-Regulated" respectively. Hereafter, these designations will be used to describe both the fuel system and the fuel pump.

Fuel Pump

The fuel pump is coupled to the compressor, vacuum pump or fuel pump drive which is driven from the engine gear
train. Fuel pump main shaft in turn drives the gear pump, governor and tachometer shaft assemblies.

The location of fuel pump components is indicated in Fig's, 5-3 and 5-4.

PT (type G) Fuel Pump

The PT (type G) fuel pump can be identified by the absence of the return line at the top of the fuel pump. The pump assembly is made up of three main units:

1. The gear pump, which draws fuel from the supply tank and forces it through the pump filter screen to the governor,

2. The governor, which controls the flow of fuel from the gear pump, as well as maximum and idle engine speeds.

3. The throttle, which provides a manual control of fuel flow to the injectors under all conditions in the operating range.

PT (type R) Fuel Pump

The PT (type R) fuel pump can be identified easily by the presence of a fuel return line from the top of the fuel pump housing to the supply tank. The pump assembly is made up of four main units:

1. The gear pump, which draws fuel from the supply tank, forcing it through the pump filter screen into the pressure regulator valve,

2. A pressure regulator, which limits the pressure of the fuel to the injectors,

3. The throttle, which provides a manual control of fuel flow to the injectors under all conditions in the operating range,

4. The governor assembly, which controls the flow of fuel at idle and to maximum governed speed.

Gear Pump And Pulsation Damper

The gear pump and pulsation damper located at the rear of the fuel pump perform the same function on both PT (type G) and PT (type R) fuel pumps.

The gear pump is driven by the pump main shaft and contains a single set of gears to pick up and deliver fuel throughout the fuel system. Inlet to the gear pump on small V-type engines may be through the fuel pump main housing. On other engines it's at the rear of the gear pump.
A pulsation damper mounted to the gear pump contains a steel diaphragm which absorbs pulsations and smoothes fuel flow through the fuel system. From the gear pump, fuel flows through the filter screen and:

1. In the PT (type G) fuel pump to the governor assembly as shown in Fig. 5-3.

2. In the PT (type R) fuel pump to the pressure regulator assembly as shown in Fig. 5-4.

Pressure Regulator

Used in the PT (type R) and in the torque modification device of PT (type G) "High-torque engine" fuel pump, Fig. 5-5, functions as a by-pass valve to regulate fuel pressure to the injectors. By-passed fuel flows back to the suction side of the gear pump. See Fig. 5-4.

Throttle

In both fuel pumps, the throttle provides a means for the operator to manually control engine speed above idle as required by varying operating conditions of speed and load.

In the PT (type G) fuel pump, fuel flows through the governor to the throttle shaft. At idle speed, fuel flows through the idle port in the governor barrel, past the throttle shaft. To operate above idle speed, fuel flows through the main governor barrel port to the throttling hole in the shaft.

In the PT (type R) fuel pump, fuel flows past the pressure regulator to the throttle shaft. Under idling conditions, fuel flows through the idle port in the governor barrel, past the throttle shaft. To operate above idle speed, fuel flows through the main governor barrel port to the throttling hole in the shaft.
passes around the shaft to the idle port in the governor barrel. For operation above idle speed, fuel passes through the throttling hole in the shaft and enters the governor barrel through the main fuel port.

Governors

Idling and High-Speed Mechanical Governor: The mechanical governor, sometimes called "automotive governor," on both PT (type G) and PT (type R) fuel pumps, is actuated by a system of springs and weights, and has two functions. First, the governor maintains sufficient fuel for idling with the throttle control in idle position; second, it cuts off fuel to the injectors above maximum rated rpm. The idle springs in the governor spring pack position the governor plunger so the idle fuel port is opened enough to permit passage of fuel to maintain engine idle speed.

During operation between idle and maximum speeds, fuel flows through the governor to the injectors. This fuel is controlled by the throttle and limited by the size of the idle spring plunger counterbore on PT (type G) fuel pumps and pressure regulator of PT (type R) fuel pumps. When the engine reaches governed speed, the governor weights move the governor plunger, and fuel passages to the injectors are shut off. At the same time another passage opens and dumps the fuel back into the main pump body. In this manner, engine speed is controlled and limited by the governor regardless of throttle position. Fuel leaving the governor flows through the shut-down valve, inlet supply lines and on into the injectors.

PT (type G) Variable-Speed Governors

There are two mechanical variable-speed governors used with the PT (type G) fuel pump. The "Mechanical Variable-Speed (MVS)" governor which is mounted directly on top of the fuel pump or remotely near the fuel pump; and the "Special Variable-Speed (SVS)" governor which is a special spring pack assembly at the lower rear of the fuel pump. See Fig's 5-5 and 5-7.

Mechanical Variable-Speed (MVS) Governor

This governor supplements the standard automotive governor to meet the requirements of applications when the engine must operate at a constant speed, but where extremely close regulation is not necessary.

Adjustment for different rpm can be made by means of a lever control or adjusting screw. At full-rated speed, this governor has a speed droop between full-load and no-load of approximately eight percent. A cross section of this governor is shown in Fig. 5-6.

As a variable-speed governor, this unit is suited to the varying speed requirements of power take-off, etc., in which the same engine is used for propelling the unit and driving a pump or other fixed-speed machine.
Special Variable-Speed (SVS) Governor

The SVS governor provides much of the same operational features of the MVS governor but is limited in application. An overspeed stop should be used with SVS governors in unattended applications and in attended installations, a positive shut-down throttle arrangement should be used if no other overspeed stop is used. Fig. 5-7.

Power take-off applications use the SVS governor lever to change governed speed of the engine from full rated speed to an intermediate power take-off speed. During operation as an automotive unit, the SVS governor is in high-speed position. See operation instructions for further information.

PT (type R) Mechanical Variable-Speed Governor

On some applications this governor replaces the standard “automotive” governor to meet the requirements of applications on which the engine must operate at a constant speed, but where extremely close regulation is not necessary.

Adjustment for different rpm can be made by means of a lever control or adjusting screw. At full-rated speed this governor has a speed droop between full-load and no-load of approximately eight percent. A cross section of this governor is shown in Fig. 5-8.

As a variable-speed governor, this unit is suited to the varying speed requirements of power take-off, etc., in which the same engine is used for propelling the unit and driving a pump or other fixed-speed machine.

Aneroid

The aneroid control, Fig. 5-9, provides a fuel by-pass system that responds to air manifold pressure and is used on turbocharged engines for close control of exhaust smoke.

The aneroid limits fuel pressure to the injectors when accelerating the engine from speeds below normal operating range, and while air intake manifold air pressure is not sufficient for complete combustion. Air intake manifold pressure rises with turbocharger speed which is powered by exhaust gas energy and is therefore low at low engine speed and exhaust gas output.

During acceleration or rapid engine load changes, turbocharger speed (intake manifold pressure) change inherently lags behind the power or fuel demand exercised by opening of the throttle. This lag does not exist in the fuel system; therefore, an overrich or high fuel to air ratio, usually accompanied by smoke, occurs until the turbocharger “catches up.”

The function of the aneroid is to create a lag in fuel system so response is equivalent to the turbocharger, thus controlling engine smoke level.

Caution: Aneroids must not be removed, disconnected or otherwise rendered ineffective, nor should settings be altered to exceed specifications as set at the factory, see “Maintenance Schedule.”

Fuel Flow

1. Fuel from the fuel pump enters aneroid and is directed to starting check valve area (5, Fig. 5-9).

2. The starting check valve (3) prevents aneroid from by-passing fuel at engine cranking speeds. For speeds above cranking, fuel pressure forces the check valve open, allowing fuel to flow to valve port (4) of shaft (9).
3. Shaft (9) and its bore form, a fuel by-pass valve. This shaft and bore allows passage or restricts fuel flow in a similar manner as throttle shaft and sleeve in PT fuel pump.

4. The shaft and sleeve are by-passing fuel when arm (10) of lever is resting against adjusting screw (1). The amount of fuel by-passed is adjusted by this screw, which protrudes from bottom of aneroid.

5. The lever arm connected to piston (8) by actuating shaft (6), rotates shaft; closing valve port. The lever is rotated by action of air intake manifold pressure (11) against piston and diaphragm (7), moving actuating shaft downward against resisting spring force, Fig. 5-9.

6. Anytime engine intake manifold air pressure is above preset “air actuation pressure,” aneroid is “out of system.”

7. The aneroid begins dumping when intake manifold pressure drops below preset value as happens after deceleration in traffic, deceleration during gear shifts, down grade motoring with closed throttle or down grade operation on light load portion of governor droop curve.

8. The aneroid does not by-pass fuel under full throttle lug down conditions until speed is low enough to reduce intake manifold air pressure to aneroid operating range (usually below engine stall-out speed).

9. Fuel allowed to pass through by-pass valve is returned (2) to suction side (inlet fitting) of PT gear pump. The by-passed fuel reduces fuel pump out-put to engine and reduces fuel manifold pressure in proportion to the by-pass rate.

PT (type D) Injectors

The injector provides a means of introducing fuel into each combustion chamber. It combines the acts of metering, timing and injection. Principles of operation are the same for inline and V-engines but injector size and internal design differs slightly. Fig’s, 5-10 and 5-11.

Fuel supply and drain flow are accomplished through internal drillings in the cylinder heads, Fig’s, 5-1 and 5-2. A radial groove around each injector mates with the drilled passages in the cylinder head and admits fuel through an adjustable (adjustable by burnishing to size at test stand) orifice plug in the injector body. A fine mesh screen at each inlet groove provides fines fuel filtration.

The fuel grooves around the injectors are separated by ‘O’ rings which seal against the cylinder head injector bore. This forms a leak-proof passage between the injectors and the cylinder head injector bore surface.

Fig. 5-10, (FWC-28). Fuel injection cycle, PT (type D) injector 3/8 inch diameter plunger.
Fuel flows from a connection atop the fuel pump shut-down valve through a supply line into the lower drilled passage in the cylinder head. A second drilling in the head is aligned with the upper injector radial groove to drain away excess fuel. A fuel drain allows return of the unused fuel to the fuel tank.

The injector contains a ball check valve. As the injector plunger moves downward to cover the feed opening, an impulse pressure wave seats the ball and at the same time traps a positive amount of fuel in the injector cup for injection. As the continuing downward plunger movement injects fuel into the combustion chamber, it also uncovers the drain opening and the ball rises from its seat. This allows free flow through the injector and out the drain for cooling purposes and purging gases from the cup.

Flanged Injector

Fuel is supplied to and drained from flanged injectors through external fuel lines and connections. From the inlet connection, fuel flows down the inlet passage of the injector, around the injector plunger between the body and cup, up the drain passage to the drain connections and lines where it returns to the supply tank.

As the plunger rises, the metering orifice is uncovered and part of the fuel is metered into the cup. At the same time,
the rest of the fuel flows out of the drain orifice. The amount of fuel passing through the metering orifice and into the cup is controlled by fuel pressure and timing, Fig. 5-11A.

During injection, the plunger is forced downward until the metering orifice is closed and the fuel in the cup is injected into the cylinder. While the plunger is seated, all fuel flow through the injector stops.

Injectors contain an adjustable orifice or selected inside diameter orifice plug in the inlet passage which regulates fuel flow into the injector.

Fuel Lines, Connections And Valves

Supply And Drain Lines

Fuel is supplied through lines to cylinder heads. A common drain line returns fuel not injected, to supply tank.

On engines using flanged injectors, fuel is supplied through a single tube to the fuel supply manifold. The drain manifold returns fuel not injected to the supply tank through a drain line located at the rear of the engine.

Automotive-applied engines are equipped with an external by-pass fuel line from pump damper or gear pump to injector return line or to tank. This reduces internal pump temperatures by returning fuel to tank rather than circulating inside pump when vehicle is going downhill and throttle is in idle position. The check valve in the line is marked and must be installed so arrow points in direction of flow, away from pump.

The PT (type A) fuel pump has a drain line returning from the top of the pump to the supply tank. This line is not necessary with the PT (type G) pump, Fig's. 5-1 and 5-2.

Connections

Fuel connectors are used between the inline engine cylinder heads to bridge the gap between each supply and drain passage (3, Fig. 5-1).

Flanged injectors are connected to the supply and drain manifolds through connections. The inlet connection contains a fine mesh screen which acts as the final filter before fuel enters the combustion chamber.

Shut-Down Valve

Either a manual or an electric shut-down valve is used on Cummins fuel pumps.

With a manual valve, the control lever must be fully clockwise or open to permit fuel flow through the valve.

With the electric valve, the manual control knob must be
Lubricating System

Cummins engines are pressure lubricated, pressure is supplied by a gear-type lubricating oil pump located in oil pan or on side of the engine.

A pressure regulator is mounted in the lubricating oil pump to control lubricating oil pressure.

Filters and screens are provided in lubricating oil system to remove foreign material from circulation and prevent damage to bearings or mating surfaces. A by-pass valve is provided in full-flow oil filter head as insurance against interruption of oil flow by a dirty or clogged element.

Maximum cleansing and filtration is achieved through use of both by-pass and full-flow lubricating oil filters. Full-flow filters are standard on all engines; by-pass filters are used on all turbocharged models and optionally on all other engines.

Some engines are equipped with special oil pans and filters for some applications, and others with auxiliary oil cooler to maintain closer oil temperature regulation.

Air compressors and turbochargers are lubricated from engine oil system. Turbocharger is also cooled by same lubricating oil used for lubrication.

Fuel pumps and injectors are lubricated by fuel oil.

Inline Engines

NH And NT Series

Oil is drawn into the pump through an external oil line connected to the oil pan sump. A screen in the sump filters the oil. On NH and NT engines (Fig. 5-12) oil is drawn from

Fig. 5-12, (LWC-18). Lubricating oil and coolant flow — Inline Engine
the pan by the pump out through a full-flow filter and circulates back into the block. The filter may be mounted directly to the rear of pump, vertically mounted on exhaust side of engine or remote mounted. External lines are used for remote mounting arrangements.

On remote and pump mounted filters oil flows from the pump to the oil cooler then flows to oil header through internal drillings in the gear case. On NTA engines oil flow is from pan to pump, to filter, to oil cooler, to block.

An oil header drilled full length of block, fuel pump side, delivers oil to moving parts within the engine. Oil pipes carry oil from the camshaft to upper rocker housings and drillings through the block, crankshaft, connecting rods, and rocker levers complete the oil circulating passages.

On engines equipped with oil cooled pistons, an oil header drilled the length of the block, exhaust manifold side, supplies oil to six spray nozzles used for piston cooling.

A piston cooling oil pump, as a second section of engine lubricating oil pump or a larger capacity oil pump, pumps this oil to the oil header.

NTC Series (Full Flow Oil Cooling)

The NTC (FFC) engine is pressure lubricated by a gear-type lubricating oil pump located on the intake manifold side of the engine. Oil pressure to the main rifle is controlled by a regulator located in the cooler support on the exhaust side of the engine.

Lubricating oil is drawn from the pan, through a suction tube, by the lubricating oil pump, Fig's, 5-13 and 5-14, then transferred from the suction cavity by the pump gears into the pressure cavity.

Lubricating oil passes from the pump into the block, then across the front of the block by means of an internal oil passage and enters the cooler support. Oil is routed out of the cooler support and into the cooler housing, passing through the cooler housing. (The oil cooler is a counterflow tube-and-shell type heat exchanger, with oil passing from front to rear through the shell and coolant water passing from rear to front through the tubes.) Oil exits the cooler housing and passes into the cooler cover, then enters the "rifle drilling" at the bottom rear of the cooler housing and flows forward into the filter head.

Lubricating oil flowing into the filter shell from the filter head enters outside the filter element and passes through the element from outside to inside. Filtered lubricating oil then re-enters the filter head and flows through rifle drilling in the bottom of the cooler housing, then flows forward out of the cooler housing and into the cooler support where the flow divides.

Filtered and cooled lubricating oil from the cooler support is routed to the turbocharger through the supply hose. Turbocharger return oil is then routed by the drain hose back to the crankcase.

Filtered and cooled lubricating oil re-enters the block from the cooler support and is transferred internally back across the front of the block through a drilled oil transfer passage to the head of the main rifle drilling. Accessory drive lubrication is supplied from the transfer passage leading to the head of the main rifle drilling. An intersecting drilling routes lubricating oil from the transfer passage out the front of the block and into the gear cover on the exhaust side of the engine, then across the front of the engine through a tube in the gear cover. The flow path then splits, part being routed to the accessory drive bushing in the gear cover and the rest being routed to the air compressor.

Piston-cooling is supplied from the transfer passage leading to the head of the main rifle drilling. An intersecting drilling allows flow to the piston-cooling rifle from the oil transfer passage. The piston-cooling rifle extends from the front to the rear of the block on the exhaust side of the engine. Six piston-cooling nozzles inserted from the outside of the block direct a spray of lubricating oil from the piston-cooling rifle to the bottom of each piston.

Lubricating oil entering the main rifle is routed by means of drilled passages and pipes to the main bearings, rod bearings, piston pin bushings, camshaft bushings, cam follower shafts and levers, rocker box shafts and rocker arms, etc., then returns to the oil pan.

C Series

The C Series engines are pressure lubricated by a gear-type lubricating oil pump. Lubricating oil pump is mounted on bottom of block, enclosed in oil pan and driven by an idler gear off the crankshaft gear.

Lubricating oil, drawn from the pan sump through a slotted suction line or a screen, is delivered to the engine working
Operation and Maintenance Manual
Cummins Automotive Diesel Engines
Operating Principles

Fig. 5-14, (LWC-25). Lubricating oil and coolant flow — FFC (NTC Series)

Fig. 5-15, (LWC-10). Lubricating oil flow — C Series
Fig. 5-16, (LWC-16). Lubricating oil and coolant flow — V-903

Fig. 5-17, (LWC-4). Lubricating oil and coolant flow — V-378, V-504 and V-565
components through a pressure regulator, full-flow filter, transfer connection, lubricating oil cooler, into an oil header which is drilled the length of the block. Drillings in the block, cylinder head, crankshaft, connecting rods and rocker levers complete the oil circulating passages. Fig. 5-15.

Connecting rod and main bearings are lubricated by oil drillings through the crankshaft.

Lubricating oil pressure is controlled by a pressure regulator located in lubricating oil filter head or on side of block.

Filters and screens are provided throughout the lubricating oil system to keep foreign material from entering engine and damaging bearings or mating surfaces.

Maximum cleansing and filtration is achieved through the use of both by-pass and full-flow lubricating oil filters. Full-flow filters are standard on all engines; by-pass filters are used on all turbocharged models.

Some engines are equipped with special oil pans and filters for some applications and others with auxiliary oil coolers to maintain closer oil temperature regulation.

V Series Engines

V6 and V8 Series engines are pressure lubricated by a gear type lubricating oil pump mounted on bottom of block, enclosed in oil pan, and gear driven from crankshaft gear.

Oil drawn from pan sump through a screen is delivered to engine working components through oil lines and oil headers which are drilled the length of block. Drillings in block, cylinder head, crankshaft and rocker lever shafts complete oil circulation passages. Fig. 5-16 and 5-17.

Oil flows through a suction tube to the lubricating oil pump up a passage in rear of block to the cooler (if used) and filter.

V-903 Series Engines

1. Oil flows from cooler and filter to right bank of oil drilling at front of engine to front center of block. Oil flows through crossover at front of block to left bank and right bank main drillings (drilled length of block). Fig. 5-16.

2. Oil flows through left bank drilling toward rear of engine to left bank tappets, accessory drive, to numbers 2, 3, 4 and 5 cam bushings, main bearings and connecting rods.

3. At the same time oil flows to a right bank drilling toward rear of engine to oil right bank tappets.

4. Right bank rocker levers are oiled intermittently from rear cam bushing location. Left bank rocker levers are oiled intermittently from front cam bushing.

V-378, V-504 And V-555 Series Engines

1. Oil flows from filter to right bank oil drilling at rear of engine to accessory drive gear, rear cam bushing and rear main bearing which in turn supplies the two rear connecting rods. Fig. 5-17.

2. Right bank rocker levers are oiled intermittently from rear cam bushing location.

3. Oil flows through the right bank drilling toward front of engine to right bank injector tappets, to center cam bushings, main bearings and connecting rods.

4. Oil flows through a crossover at front of block to left bank.

5. Left bank rocker levers are oiled intermittently through front cam bushing.

6. Oil then flows to a left bank drilling toward rear of engine to oil left bank injector tappets.
Cooling System

Water is circulated by a centrifugal water pump mounted either in or on the front of the engine, belt driven from the accessory drive or crankshaft, except C-180 water pump is mounted on side of block and is coupling driven by supercharger.

Water circulates around wet-type cylinder liners, through the cylinder heads and around injector sleeves. Fig. 5-12, 5-16, 5-17 and 5-18. Injector sleeves, in which injectors are mounted, are designed for fast dissipation of heat. The engine has a thermostat or thermostat(s) to control engine operating temperature. Engine coolant is cooled by a radiator and fan or a heat exchanger.

The Cummins Corrosion Resistor is standard on Cummins Engines. The resistor by-passes a small amount of coolant from the system via a filtering and treating element which must be replaced periodically.

Refer to coolant specifications for corrosion resistor capacity and treatment of make-up water.

NTA Aftercooled Engine

Water flows from radiator into cavity of water pump, where water flow splits. One portion circulates to the cylinder block water header around wet type cylinder liners, through the cylinder head and around the injector sleeves, upwards to the water manifold, to the thermostat housing.

At the rear of the block water header, water is directed to the aftercooler, Fig. 5-18. Water flows forward through the aftercooler to the water crossover to the thermostat housing. The second portion of water flows from the cavity of the water pump housing through the oil cooler and tubing to the rear of the water manifold forward to the thermostat housing, to control engine temperature.

Fig. 5-16, (LWC-22). Coolant and lubricating oil flow — NTA Inline Engine
Air System

The diesel engine requires hundreds of gallons of air for every gallon of fuel that burns. For the engine to operate efficiently, it must breathe freely, intake and exhaust systems must not be restricted.

The intake air should always be routed through an air cleaner (or air silencers). The cleaner may be mounted on engine or equipment and may be either oil bath, paper element or composite type depending upon engine application. Air is routed from air cleaner directly to intake air manifold, turbocharger or supercharger.

NTA Aftercooler

An aftercooler (or intercooler as it is sometimes called) is a device in the engine intake system designed to reduce intake air temperature and/or preheat intake air temperature.

The aftercooler consists of a housing, used as a portion of the engine intake air manifold, with an internal core. The core is made of tubes through which engine coolant circulates. Air is cooled or heated by passing over the core prior to going into the engine combustion chambers. Therefore, improved combustion results from better control of intake air temperature cooling or warming as applied by the aftercooler.

Supercharger

A supercharger is a gear-driven air pump which employs rotors to force air into engine cylinders. The supercharger is driven from the engine crankshaft through a gear train turning at about 1.8 times engine speed, Fig. 5-19.

Turbocharger

The turbocharger forces additional air into combustion chambers so engine can burn more fuel and develop more horsepower than if it were naturally aspirated. In some cases the turbocharger is used for the engine to retain efficiency (balanced fuel to air ratio) at altitudes above sea level.

The turbocharger consists of a turbine wheel and a centrifugal blower, or compressor wheel, separately encased but mounted on and rotating with a common shaft.

The power to drive turbine wheel — which in turn drives the compressor — is obtained from energy of engine exhaust gases. Rotating speed of the turbine changes as energy level of gas changes; therefore, the engine is supplied with enough air to burn fuel for its load requirements. Fig. 5-20, 5-21, 5-22 and 5-23. The turbocharger is lubricated and cooled by engine lubricating oil.

Air Compressor

The Cummins air compressor may be either a single or two cylinder unit coupling or gear driven from the engine gear train accessory drive. Lubrication is received from the engine lubrication system, with oil carried by internal drillings. The cylinder head is cooled by engine coolant. Operating functions are as follows:

Air Intake

Air is drawn into the compressor through the engine intake air manifold or compressor mounted breather. As the piston moves down, a partial vacuum occurs above it.
The difference in cylinder pressure and atmospheric pressure forces the inlet valve down from its seat, allowing the air to flow through the intake port and into the cylinder. When the piston has reached the bottom of its stroke, spring pressure is sufficient to overcome lesser pressure differential and forces the valve against its seat, Fig. 5-24 and Fig. 5-25.

Compression
When the piston starts its upward stroke, the increased pressure of air in the cylinder and head forces the outlet valve away from its seat. The compressed air then flows through outlet ports and into the air tank as the piston continues its upward stroke. On piston downstroke, the exhaust valve closes and the intake valve opens except during unloading period.
Unloading

When pressure in the air tank is at a predetermined level, air pressure is applied to top of unloader cap by a compressor governor. This pressure forces the unloader cap down and holds the intake valve open during non-pumping cycle. When pressure in air tank drops, the unloader cap returns to its upper position and intake and compression sequences begin once again.

Vacuum Pump

The Cummins Vacuum Pump, shown in Fig. 5-26, is an adaptation of Cummins Air Compressor; it is a single-cylinder unit driven from engine by integral crankshaft and accessory drive. Lubrication is received from engine lubricating system, with oil carried by internal drillings. The cylinder head is cooled by engine coolant. Operating functions are as follows:

Air Intake

As piston moves downward on intake stroke a vacuum occurs above piston. The difference in cylinder pressure and atmospheric pressure forces inlet valve from its seat allowing air to flow through intake port into cylinder from vacuum tank thus creating vacuum in vacuum tank. When piston has reached bottom of its stroke, spring pressure is sufficient to overcome lesser pressure differential and forces valve against its seat.

Compression

When piston starts upward stroke, increased pressure of air in cylinder and head forces outlet valve away from seat. Air then flows through outlet port and is discharged into vacuum pump crankcase or engine crankcase, as piston continues upward stroke. When piston reaches end of stroke, air pressure in head drops to a point where spring forces exhaust valve against seat and closes outlet passage.
Index

Aftercooler	5-16
Air Cleaner Cleaning (Oil Bath Type)	2-23
Air Cleaner Element - Cartridge Type	2-13
Air Cleaner Element Cleaning (Single and Dual Type Elements)	2-11
Air Cleaner Element Cleaning (Dry Type)	2-12, 2-13
Air Cleaner Oil Changing	2-14
Air Cleaner Tray Screen Cleaning	2-14
Air Compressor	5-16
Air Compressor Unloading	5-18
Air Connections	1-2, 2-10
Air Inlet Restriction At Air Cleaner	2-10
Air Inlet Restriction At Engine	2-11
Air Piping	2-10
Air System	5-16
Air Tank Draining	2-5
Alternator Brushes And Commutators	2-24
Alternator Lubrication	2-9
Aneroid	5-6
Aneroid - Check Oil Level, Clean Breather, Check Adjustment, Change Oil, Check Bellows and Replace Breather	2-20, 2-32
Aneroid - Replace Bellows and Calibrate	2-34
Auxiliary Braking	1-8
Belt Tension - Checking And Adjusting	2-18
Braking To Prevent Excessive Engine Speed	1-8
By-Pass Oil Filter Changing	2-8
Check For Damage	2-5
Clutch Adjustment	2-37
Cold-Starting Aid Checking	2-36
Cold-Starting Aids	1-4
Cold-Weather Protection	1-9
Compression Stroke	5-1
Coolant Check	3-6
Coolant Leaks	2-4, 2-17
Coolant Level	1-2, 2-5
Coolant Specifications	3-5
Cooling System	5-15
Cooling System Cleaning	2-36
Corrosion Resistor Changing	2-16
Crankcase Breather Cleaning	2-14
Cranking Motor Brushes And Commutators	2-24
Cranking Motor Lubrication	2-9
Crankshaft End Clearance	2-37
Crosshead Adjustment	2-28, 2-31
Cruising Operation	1-5
Daily Checks	1-10, 2-4
Diesel Cycle	5-1
Downhill Operation	1-7
Drive Pulley	2-36
Electric Connection Cleaning	2-36
Engine Blow-By	2-35
Engine Break-In	1-1
Engine Coolant	1-2
Engine Exhaust	1-7
Engine Fuel Pressure, Speed and Aneroid Adjustment	2-32
Engine Oil Changing	2-6
Engine Shut-Down	1-8
Engine Speeds	1-5
Exhaust Back Pressure	2-32
Exhaust Stroke	5-1
Fan Hub Lubrication	2-24
Fan Pulley Mounting	2-36
Federal Smoke Emission Certification	1-7
Fuel Filter Changing (Replaceable Element Type)	2-9
Fuel Filter Changing (Throw-Away Type)	2-9
Fuel Filter Element Changing	2-9
Fuel Filter Sediment Draining	2-5
Fuel Lines, Connections and Valves	5-8
Fuel Manifold Pressure	2-22
Fuel Oil Leaks	2-4
Fuel Oil Specifications	3-4
Fuel Pump	5-2
Fuel Pump Calibration	2-33
Fuel Pump Screen And Magnet Cleaning	2-21
Fuel Pump Seals	2-16
Fuel Pump Pressure Regulator	5-4
Fuel Restriction	2-9
Fuel Supply Lines And Connections	1-2
Fuel System Adjustment	2-5
Fuel System	5-2
Fuel System Priming	1-1
Fuel Tank Breather Cleaning	2-5
Fuel Tank Filling	2-6
Fuel Tank Sediment Draining	2-5
Gear Pump And Pulsation Damper	5-3
Generator Brushes And Commutators	2-24
Generator Lubrication	2-9
Governed Engine Speed	2-32
Governors	5-5
Grease Specifications	3-3
High-Altitude Operation	1-8
Hose Checking	2-36
Idling The Engine	1-5
Injectors	5-7
Injector Plunger Adjustment	2-25, 2-30
Injectors — Cleaning And Calibrating 2-33
Instrument Panels .. 1-6
Intake Stroke .. 5-1

Lubricating Oil Analysis 2-6
Lubricating Oil Leaks 2-4
Lubricating Oil Specifications 3-1, 3-2
Lubricating System 5-10
Lubricating System Priming 1-1

Maintenance Check Sheet 2-2
Maintenance Intervals 2-2
Maintenance Operation 2-1
Maintenance Schedule 2-1
Maintenance Performance Record 2-3
Manifold Nut or Capscrew Tightening 2-37
Maximum Horsepower Requirements 1-7
Mounting Bolt And Nut Tightening 2-37

New Engine Break-In 1-1

Oil Bath Cleaner Oil Level 2-5
Oil Change Limits .. 2-6
Oil Filter Element Changing 2-7
Oil Level .. 1-1, 2-4
Oil Pressure Gauge 1-6
Oil Pressure Recording 2-8
Oil Temperature Gauge 1-6
Operating Instructions 1-1
Operating Principles 5-1
Operator’s Daily Report 1-10, 2-4
Other Maintenance Checks 2-36

Power Stroke ... 5-1
Power Take-Off Applications 1-8
Power Take-Off Clutch Adjustment 2-37
Power Take-Off Lubrication 2-4
Pressure Flushing .. 2-36
Preheater — Cold Starting 2-3, 2-36
Pre-Starting .. 1-1

Radiator Core Cleaning 2-15
Rebuilt Units — Inspecting And Installing 2-33

Shifting Gears ... 1-7
Specifications And Torque 3-1
Shut-Down Valve ... 5-9
Shutterstock Checking 2-36
Starting Procedure 1-2
Steam Clean Engine 2-21
Storage For Engine Out Of Service 2-3
Supercharger .. 5-16

Tachometer ... 1-6
Thermal Control Settings 2-37
Thermatic Fan Checking 2-36
Thermostat And Seal Checking 2-37
Throttle .. 5-4
Throttle Linkage ... 2-16
Torque Specifications 3-6
Trouble Shooting ... 4-1
Trouble Shooting Chart 4-2

Turbocharger .. 5-16
Turbocharger Bearing Clearance 2-33
Turbocharger Compressor Wheel And 2-33
Diffuser Cleaning .. 2-37
Turbocharger Mounting Nut Tightening 2-37
Turbocharger Oil Leaks 2-24
Vacuum Pump ... 5-18
Valve Adjustment ... 2-25, 2-29, 2-33
Vibration Damper Alignment 2-22

“Warming Up” Engine 1-5
Water Pump Lubrication 2-22
Water Temperature Gauge 1-6
The following Cummins Service Publications concerning Cummins Engines and Units can be purchased by filling out this order form and mailing it with check or money order to Parts and Service Publications Department, Cummins Engine Company, Inc., 1000 5th Street, Columbus, Indiana, U.S.A. 47201. When desired these publications may be ordered from Cummins Engine Company, Ltd., Yarm Road, Darlington, County Durham, England or from any Cummins Distributor or Cummins Dealer. Manuals ordered from Darlington England may be available in one of the major European languages, please specify language required when ordering. If specific language requirement cannot be filled an English Manual will be furnished.

Prices listed are applicable only in the U.S.A. and are subject to change without notice and without incurring obligation. Prices outside the U.S.A. vary by area. Obtain details from your nearest Cummins Distributor or Dealer. Where manuals have been updated and a new number assigned, the latest issue will be sent.

<table>
<thead>
<tr>
<th>Bulletin Description</th>
<th>Bulletin Number</th>
<th>Price Each U.S.A.</th>
<th>Qty. Req'd.</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-855,N-927 CID, NH,NT Engine Shop Rebuild</td>
<td>983696</td>
<td>$4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-378,V-504,V-555 CID, V6-155,V8-210 Engine Shop Rebuild</td>
<td>983598</td>
<td>$4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-903,VT-903 CID Engine Shop Rebuild</td>
<td>983653</td>
<td>$4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-464 CID Engine Shop Rebuild</td>
<td>983627</td>
<td>$4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT Fuel Pump Shop Rebuild</td>
<td>983535</td>
<td>$2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT Injectors Shop Rebuild</td>
<td>983536</td>
<td>$2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT (type G) Fuel Pump Calibration</td>
<td>983725</td>
<td>$2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT (type R) Fuel Pump Calibration</td>
<td>983505</td>
<td>$2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T35 & T50 Turbocharger Shop Rebuild</td>
<td>983701</td>
<td>$1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST & VT50 Turbocharger Shop Rebuild</td>
<td>983681</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cummins Compressor Shop Rebuild</td>
<td>983742</td>
<td>$2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH Parts Catalog</td>
<td>967104</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT Parts Catalog</td>
<td>967109</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTA Parts Catalog</td>
<td>967147</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6-155 Parts Catalog</td>
<td>967140</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V8-210 Parts Catalog</td>
<td>967144</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-903 Parts Catalog</td>
<td>967103</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Parts Catalog</td>
<td>967117</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super 250/270 Parts Catalog</td>
<td>967167</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-555 Parts Catalog</td>
<td>967175</td>
<td>$1.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shotts Engines				
NHK-743 CID Parts Catalog	SS1			
NHK (5-1/2" Bore) 855 CID Parts Catalog	SS11			
NTK,NTAK 855 CID Parts Catalog	SS12			

Total Order

Indiana residents—add 2% Sales Tax

Total Amount Enclosed

IMPORTANT: PLEASE PRINT CLEARLY OR TYPE NAME AND ADDRESS.

Name

Street Address

City ___________________________ State ___________ Zip Code ___________

Country ________________________

Engine Model __________________ Equipment Make and Type ___________