TOWING OR PUSH STARTING

Before towing the vehicle, be sure to lift the rear wheels off the ground or disconnect the driveline to avoid damage to the transmission during towing.

NOTE: If the transmission has 4 wheel drive, disconnect both front and rear drivelines. Because of the design of the hydraulic system, the engine cannot be started by pushing or towing.
FOREWORD

This manual has been prepared to provide the customer and the maintenance personnel with information and instructions on the maintenance and repair of the CLARK-HURTH COMPONENTS product.

Extreme care has been exercised in the design, selection of materials and manufacturing of these units. The slight outlay in personal attention and cost required to provide regular and proper lubrication, inspection at stated intervals, and such adjustments as may be indicated will be reimbursed many times in low cost operation and trouble free service.

In order to become familiar with the various parts of the product, its principle of operation, trouble shooting and adjustments, it is urged that the mechanic study the instructions in this manual carefully and use it as a reference when performing maintenance and repair operations.

Whenever repair or replacement of component parts is required, only Clark-Hurth Components-approved parts as listed in the applicable parts manual should be used. Use of “will-fit” or non-approved parts may endanger proper operation and performance of the equipment. Clark-Hurth Components does not warrant repair or replacement parts, nor failures resulting from the use of parts which are not supplied by or approved by Clark-Hurth Components. IMPORTANT: Always furnish the Distributor with the serial and model number when ordering parts.
TABLE OF CONTENTS

HOW THE UNITS OPERATE ... 1
TORQUE CONVERTER ASSEMBLY (CROSS SECTION) 2
INTERNAL OIL FLOW .. 3
TORQUE CONVERTER ASSEMBLY – EXPLODED VIEW................. 4
ASSEMBLY INSTRUCTIONS ... 6-7
DISASSEMBLY OF TORQUE CONVERTER 8
CLEANING AND INSPECTION .. 15
REASSEMBLY OF TORQUE CONVERTER 16
PRESSURE AND LUBRICATION SPECIFICATIONS 23
IRREGULARITIES IN PERFORMANCE 24
CONVERTER TO ENGINE INSTALLATION 26
RING GEAR INSTALLATION (16 SCREW) 26-27
RING GEAR INSTALLATION (32 SCREW) 28-29
FLEX PLATE INSTALLATION ... 32-33
ASSEMBLY OF LOCK-UP COVER 34

NOTE: Metric Dimensions Shown in Brackets [].
HOW THE UNITS OPERATE

The torque converter portion of the power train enacts an important role in delivering engine power to the driving wheels. In order to properly maintain and service these units it is important to first understand their function and how they operate.

The torque converter and transmission function together and operate through a common hydraulic system. To obtain maximum serviceability they have been designed and built as separate units. It is necessary, however, to consider both units in the study of their function and operation.

To supplement the text herein, and for reference use therewith, the following illustrations are provided.

- Torque Converter Assembly — Cross Section
- Internal Oil Flow — Torque Converter
- Torque Converter Assembly — Exploded View
- Assembly Instructions

The torque converter is composed of four members: The impeller which is the driving member, the drive disc or impeller cover, the turbine, which is the driven member and the reaction member. The reaction member option is splined to the converter support and does not rotate in either direction or can be free wheeling, depending on the application. The impeller and drive disc form the outer shell. The turbine runs within the outer shell and is connected to the output shaft. The oil is the only connection between the turbine and impeller member.

Three pump drive gears are bearing mounted in the converter housing and meshed with a gear on the impeller hub. With the engine running the pump drive gears rotate at engine speed. The pumps are externally mounted on the converter housing and are connected to the pump shafts by a pump drive sleeve.

With the engine running, the converter charging pump draws oil from the transmission sump and directs it through oil filters to the pressure regulating valve located on top of the converter. From the regulating valve it is then directed to the transmission clutches and into the converter.

The pressure regulating valve remains closed until required pressure is delivered to the transmission for actuating the direction and speed clutches. This regulator valve consists of a hardened valve spool operating in a closely fitted bore. The valve spool is backed up by a spring to hold the valve spool against its seat until the oil pressure overrides the spring force. The valve spool moves toward the spring until a port is exposed in the side of the bore. The oil can flow through this port into a distributor which directs the oil through a passage into the converter.

After entering the converter, the oil is directed into the converter support through the impeller bearing and to the converter cavity.

Three members of the torque converter are composed of a series of blades. The blades are curved in such a manner as to force the oil to circulate from the impeller to the turbine, through the reaction member and again into the impeller. This circulation causes the turbine to turn in the same direction as the impeller. Oil enters the inner diameter of the impeller and exits from the outer diameter into the outer diameter of the turbine, then exits from the inner diameter of the turbine and through the reaction member. The oil again enters the inner diameter of the impeller.

The oil exits between the turbine shaft and reaction member support and through an oil distributor which directs the oil out of the converter, and to the oil cooler. After leaving the cooler the oil is directed to the lubricating oil inlet on the transmission and through a series of tubes to the transmission bearings, and clutches. The oil is internally returned to the transmission sump.
The converter lube and leakage oil is returned to the transmission sump by a flexible hose installed in the lowest pipe tap hole in the converter housing. This line must have a continuous drop to allow by gravity flow, leakage oil to return to the transmission sump.

A safety valve is built in the pressure regulating valve and will open to bypass oil only if an excessive pressure is built up due to a blocked passage.

With the engine operating at any speed and the turbine and output shafts stationary, the converter is in a "stall" condition. Full power or wide open throttle "stalls" for more than 30 seconds at a time will generate excessive heat and may cause converter or transmission seal damage.
C320 SERIES CONVERTER OIL FLOW DIAGRAM

FROM FILTER

TO FILTER

TO TRANSMISSION CLUTCH

FROM TRANSMISSION SUMP

TO COOLER

GRAVITY DRAIN TO TRANSMISSION SUMP

HIGH PRESSURE
LOW PRESSURE
GRAVITY & SUCTION
C320 CONVERTER

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve Stop</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Valve Stop “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Valve Piston</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Valve Spring - Inner</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Valve Spring - Outer</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Valve Stop Roll Pin</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Regulator Valve to Housing Screw</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Regulator Valve to Housing Screw</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Valve Stop Roll Pin</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Valve Stop “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Valve Stop</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Regulator Valve Assembly</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Valve Housing Pipe Plug</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Valve Housing Pipe Plug</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Safety Valve Seat</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Safety Valve Plunger</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Safety Valve Spring</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Regulating Valve to Housing “O”</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Regulating Valve to Housing Gasket</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Pump Drive Gear Snap Ring</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>Pump Drive Gear</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>Converter Housing Adaptor Ring</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Breather Assembly</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Converter Housing</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Pump Drive Shaft Bearing</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>Pump Drive Shaft Spacer</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>Pump Drive Shaft Bearing</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>Pump Drive Shaft Bearing Snap Ring</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Pump Drive Shaft</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Pump Drive Shaft Snap Ring</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>Pump Drive Shaft Washer</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Pump Shaft Snap Ring</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Charging Pump Sleeve</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Charging Pump Gasket</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Converter Charging Pump</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Pump Mounting Stud</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>Pump Mounting Stud Lockwasher</td>
<td>3</td>
</tr>
<tr>
<td>38</td>
<td>Pump Mounting Stud Nut</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>Output Shaft Nut</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Output Shaft Washer</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Output Shaft “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Output Flange</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Bearing Retainer Oil Seal</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Bearing Retainer Stud Nut</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>Bearing Retainer Stud Lockwasher</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>Bearing Retainer Stud</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Bearing Retainer Screw</td>
<td>3</td>
</tr>
<tr>
<td>48</td>
<td>Bearing Retainer Screw Lockwasher</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>Bearing Retainer</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Bearing Retainer “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Output Shaft Rear Bearing</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Output Shaft Bearing Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>Output Shaft</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Output Shaft Gear</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Output Shaft Front Bearing</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>Bearing Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Converter Housing Pipe Plug</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Oil Baffle Screw Lockwasher</td>
<td>3</td>
</tr>
<tr>
<td>59</td>
<td>Oil Baffle Screw</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>Converter Housing Pipe Plug</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Converter Housing Pipe Plug</td>
<td>4</td>
</tr>
<tr>
<td>62</td>
<td>Gear Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Turbine Shaft Gear</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>Turbine Shaft Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>Turbine Shaft Bearing</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>Turbine Shaft Piston Ring</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>Turbine Shaft</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>Stator Support & Sleeve Assembly</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>Piston Ring Expander Spring</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>Stator Support Piston Ring</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Impeller Hub Gear Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Impeller Hub Gear</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>Stator Support Screw</td>
<td>6</td>
</tr>
<tr>
<td>74</td>
<td>Stator Support Screw Lockwasher</td>
<td>6</td>
</tr>
<tr>
<td>75</td>
<td>Turbine Hub Screw</td>
<td>8</td>
</tr>
<tr>
<td>76</td>
<td>Turbine Hub Screw Washer</td>
<td>8</td>
</tr>
<tr>
<td>77</td>
<td>Turbine</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>Turbine Hub</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Reaction Member Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>Reaction Member</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Reaction Member Spacer</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>Bearing Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Impeller Hub Bearing</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Impeller Hub</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Impeller Hub “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Impeller</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Impeller Hub Screw Backing Ring</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Hub to Impeller Screw</td>
<td>12</td>
</tr>
<tr>
<td>89</td>
<td>Oil Baffle</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>Oil Baffle “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>Oil Baffle Oil Seal</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>Impeller to Cover “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>Impeller Cover</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>Impeller Cover Bearing</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>Bearing Cap to Impeller Cover “O” Ring</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>Bearing Washer</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>Bearing Snap Ring</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>Impeller Cover Bearing Cap</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>Impeller Cover Sleeve</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>Ring Gear Screw</td>
<td>16</td>
</tr>
<tr>
<td>101</td>
<td>Ring Gear Screw Plain Washer</td>
<td>16</td>
</tr>
<tr>
<td>102</td>
<td>Flywheel Ring Gear</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>Bearing Cap to Impeller Cover Screw</td>
<td>10</td>
</tr>
<tr>
<td>104</td>
<td>Bearing Cap to Impeller Cover Screw Washer</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>Impeller to Cover Screw</td>
<td>24</td>
</tr>
<tr>
<td>106</td>
<td>Impeller to Cover Screw Washer</td>
<td>24</td>
</tr>
</tbody>
</table>
GENERAL NOTES
1. Torque output shaft nut 200 to 250 Lbs. Ft. [271-339 N·m]
2. All lead-in chamfers for oil seals, piston rings & "O" rings must be smooth & free from burrs. Inspect at assembly.
3. Lubricate all piston rings & "O" rings at assembly.
4. Apply thin coating of grease between seal lips on lip type seals prior to assembly.
5. Use Permatex & Crane Sealer only where specified.
6. Apply very light coat of Permatex No. 2 to O.D. of all oil seals before assembly.
7. After assembly of parts using Permatex or Crane sealer, there must be no free or excess material that could enter the oil circuit.
8. Heat nose bushing to 200°F [94°C] before assembly of bushing to cover.

OFFSET DRIVE

Impeller hub and turbine hub assembly with backing ring and special self locking screws.
1. Clean hub mounting surface and tapped holes with solvent. Dry thoroughly being certain tapped holes are clean and dry.
2. Install backing ring and special self locking screws. Tighten screws 40 to 45 Lbs. Ft. [54.3-61.0 N·m]

OFFSET DRIVE

Note: Assembly of hub must be completed within a fifteen minute period from start of screw installation. The special screw is to be used for one installation only. If the screw is removed for any reason it must be replaced. The epoxy left in the hub holes must be removed with the proper tap and cleaned with solvent. Dry hole thoroughly and use a new screw for reinstallation.

Seal to be flush with rear surface.

Assemble bearing with notches as shown

Permatex studs used on rear bearing cap.

Lube holes to be checked prior to assembly. Holes must be free of dirt and burrs.

Enlarged view of piston ring & expander.

Expander gap to be approx. 180° from ring hook joint to aid assembly.

REGULATOR VALVE

SECTION A-A
Note:
Power take off can be mounted on either offset or straight thru drive converter.

OFFSET DRIVE WITH LOCK-UP

TWO PLATE CLUTCH

Assemble bearing with notches as shown

ONE PLATE CLUTCH

Lock Tab See View "p"

Lockwire See View "R"

Torque Turbine Bolts 30 to 35 Lbs. Ft. [41-47 N·m]

Torque cap screws & lockwire every 2 capscrews together as shown, lockwire must not protrude above capscrew head.

View "R"

Use bearing with full inner race shoulder only. Do not use bearing with seal or shield grooves in inner race.

View "p"

Grade 5

<table>
<thead>
<tr>
<th>NOM SIZE</th>
<th>FINE THREAD [Lb-FT] [N·M]</th>
<th>COARSE THREAD [Lb-FT] [N·M]</th>
<th>FINE THREAD [Lb-FT] [N·M]</th>
<th>COARSE THREAD [Lb-FT] [N·M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5625</td>
<td>91 - 100 [123.4 - 135.5]</td>
<td>82 - 90 [111.2 - 122.0]</td>
<td>128 - 141 [173.6 - 191.1]</td>
<td>115 - 127 [156.0 - 172.2]</td>
</tr>
<tr>
<td>5000</td>
<td>64 - 70 [86.8 - 94.9]</td>
<td>57 - 63 [77.3 - 85.4]</td>
<td>90 - 99 [122.1 - 134.2]</td>
<td>80 - 88 [108.5 - 119.3]</td>
</tr>
<tr>
<td>4375</td>
<td>41 - 45 [55.6 - 61.0]</td>
<td>37 - 41 [50.2 - 55.5]</td>
<td>58 - 64 [78.7 - 86.7]</td>
<td>52 - 57 [70.6 - 77.2]</td>
</tr>
</tbody>
</table>

Grade 8

Torque Specification for Lubricated or Plated Screw Threads
OVERHAUL INSTRUCTIONS FOR TORQUE CONVERTER

The following instructions will cover the disassembly and reassembly of the torque converter in a sequence that would normally be followed after the unit is removed from the machine and is to be completely overhauled.

CAUTION: Cleanliness is of extreme importance and an absolute must in the repair and overhaul of this unit. Before attempting any repairs, the exterior of the unit must be thoroughly cleaned to prevent the possibility of dirt and foreign matter entering the mechanism.

DISASSEMBLY OF THE TORQUE CONVERTER

Figure 1
Remove impeller cover bearing cap bolts.

Figure 2
CAUTION: Converter can not be completely drained of oil thru drain plugs. It is recommended a container be used to catch oil. Use puller screws in threaded holes in bearing cap.

Figure 3
Remove bearing cap and drain oil. This will still not drain all of the oil but will catch most of it.

Figure 4
Remove impeller cover bearing to turbine hub retainer ring.
Figure 5
Remove retainer ring washer.

Figure 6
Remove impeller cover to impeller bolts.

Figure 7
Using pry slots provided, pry impeller cover from impeller.
NOTE: Be prepared to catch more oil trapped in the converter wheels.

Figure 8
Remove impeller cover and turbine as an assembly.

Figure 9
Remove reaction member retainer ring.

Figure 10
Remove reaction member.
Figure 11
Remove reaction member spacer.

Figure 12
Loosen oil baffle bolts (qty. 3). Tap lightly on each bolt. This will loosen oil baffle from converter housing.

Figure 13
Remove 3 oil baffle bolts. Remove impeller and oil baffle as an assembly.

Figure 14
Remove charging pump stud nuts.

Figure 15
Remove charging pump assembly.

Figure 16
Remove pump drive sleeve.
Figure 17
Remove pump shaft retaining ring.

Figure 18
Remove pump shaft retaining washer.

Figure 19
Remove pump drive gear retaining ring.

Figure 20
Remove pump drive gear.

Figure 21
Tap on pump drive shaft to remove shaft and bearing assembly.

Figure 22
From rear of housing remove pump drive shaft and bearing assembly.
Figure 23
Remove impeller hub gear retaining ring.

Figure 24
Remove hub gear.

Figure 25
Remove oil baffle and seal from impeller hub.

Figure 26
Remove impeller hub to impeller bolts.

Figure 27
Support outer edge of impeller cover. Using an appropriate driver, drive turbine hub from impeller cover bearing.

Figure 28
Using an impact wrench (if available) remove output flange nut. If impact wrench is not available a flange retainer bar must be used to hold flange from turning while removing flange nut.
Figure 29
Remove flange nut, washer, "O" ring and flange from output shaft.

Figure 30
Remove output shaft bearing retainer bolts, stud nuts and washers.

Figure 31
From front of housing drive output shaft assembly from converter housing.

Figure 32
Output shaft, gear and bearing pressed from bearing retainer. Using a spreading type snap ring plier, spread ears on rear output shaft bearing snap ring. Press bearing from bearing retainer while spreading snap ring.

Figure 33
Remove reaction member support bolts. Remove support and turbine shaft assembly. NOTE: If converter housing has a bore plug in the rear center line, remove plug. Remove turbine shaft gear retainer ring. Remove support and turbine shaft assembly. Turbine shaft gear will remain in rear of housing. This is a special ratio gear and is larger than the support bore.

Figure 34
Remove turbine shaft gear retainer ring and gear. See note above.
Figure 35
Remove turbine shaft bearing retainer ring from support.

Figure 38
Remove support oil sealing ring; some models will have an expander spring also.

Figure 36
Remove turbine shaft and bearing from support.

Figure 39
Remove pressure regulating valve to housing screws and lockwashers.

Figure 37
Remove turbine shaft oil sealing ring.

Figure 40
Remove pressure regulating valve, safety valve plunger and spring.
CLEANING AND INSPECTION

CLEANING

Clean all parts thoroughly using solvent type cleaning fluid. It is recommended that parts be immersed in cleaning fluid and moved up and down slowly until all old lubricant and foreign material is dissolved and parts are thoroughly cleaned.

CAUTION: Care should be exercised to avoid skin rashes and inhalation of vapors when using solvent type cleaners.

Bearings

Remove bearings from cleaning fluid and strike larger side of cone flat against a block of wood to dislodge solidified particles of lubricant. Immerse again in cleaning fluid to flush out particles. Repeat above operation until bearings are thoroughly clean. Dry bearings using moisture-free compressed air. Be careful to direct air stream across bearing to avoid spinning. Do not spin bearings when drying. Bearings may be rotated slowly by hand to facilitate drying process.

Freewheel Assembly

Clean the complete freewheel assembly the same as cleaning bearings. NOTE: Do not disassemble freewheel assembly. If freewheel assembly is damaged it must be replaced with a complete assembly. After cleaning and drying freewheel assembly dip complete assembly in automatic transmission fluid and wrap in a clean lintless cloth or paper to protect until assembled.

Housings

Clean interior and exterior of housings, bearing caps, etc., thoroughly. Cast parts may be cleaned in hot solution tanks with mild alkali solutions providing these parts do not have ground or polished surfaces. Parts should remain in solution long enough to be thoroughly cleaned and heated. This will aid the evaporation of the cleaning solution and rinse water. Parts cleaned in solution tanks must be thoroughly rinsed with clean water to remove all traces of alkali. Cast parts may also be cleaned with steam cleaner.

CAUTION: Care should be exercised to avoid skin rashes and inhalation of vapors when using alkali cleaners.

Thoroughly dry all parts cleaned immediately by using moisture-free compressed air or soft, lintless absorbent wiping rags free of abrasive materials such as metal filings, contaminated oil or lapping compound.

INSPECTION

The importance of careful and thorough inspection of all parts cannot be overstressed. Replacement of all parts showing indication of wear or stress will eliminate costly and avoidable failures at a later date.

Bearings

Carefully inspect all rollers, cages and cups for wear, chipping or nicks to determine fitness of bearings for further use. Do not replace a bearing cone or cup individually without replacing the mating cup or cone at the same time. After inspection, dip bearings in clean light oil and wrap in clean lintless cloth or paper to protect them until installed.

Oil Seals, Gaskets, Etc.

Replacement of spring load oil seals, "O" Rings, metal sealing rings, gaskets and snap rings is more economical when unit is disassembled then premature overhaul to replace these parts at a future time. Further loss of lubricant through a worn seal may result in failure of other expensive parts of the assembly. Sealing members should be handled carefully, particularly when being installed. Cutting, scratching, or curling under of lip of seal seriously impairs its efficiency. Apply a thin coat of Permatex No. 2 on the outer diameter of the oil seal to assure an oil tight fit into the retainer. When assembling new metal type sealing rings, same should be lubricated with coat of chassis grease to stabilize rings in their grooves for ease of assembly of mating members. Lubricate all "O" Rings and seals with Automatic Transmission Fluid before assembly.

Gears and Shafts

If magna-flux process is available, use process to check parts. Examine teeth on all gears carefully for wear, pitting, chipping, nicks, cracks or scores. If gear teeth show spots where case hardening is worn through or cracked, replace with new gear. Small nicks may be removed with suitable hone. Inspect shafts and quills to make certain they are not sprung, bent, or splines twisted, and that shafts are true.

Housing, Covers, etc.

Inspect housings, covers and bearing caps to be certain they are thoroughly cleaned and that mating surfaces, bearing bores, etc., are free from nicks or burrs. Check all parts carefully for evidence of cracks or conditions which would cause subsequent oil leaks or failures.
REASSEMBLY OF TORQUE CONVERTER

NOTE: If converter housing was changed, see page 31 for speed sensor bushing installation.

Figure 42

If pressure regulating valve was disassembled, reassemble as follows: Install new "O" ring on valve spring stop (one on each end, only one shown). Insert piston in housing. Install inner and outer valve springs. Install spring stop on spring. Depress spring stop and install spring stop roll pin.

Figure 43

Position safety valve spring and plunger in converter housing.

Figure 44

Install new gasket on converter housing, and new "O" ring on valve housing. Position valve assembly on converter housing.

Figure 45

Install valve screws and lockwashers. Tighten 23 to 25 ft. lbs. torque [31.2-33.8 N.m].

Figure 46

Apply a light coat of Permatex on the outer diameter of the output shaft oil seal. Press oil seal in bearing retainer from inside of retainer as shown and to dimension shown. See assembly instruction sheet, page 8.

Figure 47

Spread ears on the rear bearing retainer ring in bearing retainer. Press output rear bearing in bearing retainer. Be certain snap ring is in full position in snap ring groove. Press output shaft into bearing retainer. Use caution as not to damage oil seal. Position output gear on shaft. Press front output bearing on shaft. NOTE: Use bearings with full inner race shoulder only. Do not use bearing with seal or shield grooves on inner race. Install bearing retainer ring.
Figure 48
Install output flange, "O" ring, washer and flange nut. Tighten nut 200 to 250 ft. lbs. torque [271.2-338.9 N.m]. Install new "O" ring on output shaft bearing retainer. Position output assembly on converter housing.

Figure 51
If turbine shaft bearing was removed, press bearing on shaft. NOTE: Ball bearing loading notches must be away from shoulder of turbine shaft. Install new turbine shaft oil sealing ring.

Figure 49
Install lockwashers, cap screws and stud nuts. Tighten stud nuts 41 to 45 ft. lbs. torque [55.6-61.0 N.m]. Tighten cap screws 37 to 41 ft. lbs. torque [50.1-55.5 N.m].

Figure 52
Install turbine shaft assembly in reaction member support. Use caution as not to damage turbine shaft oil sealing ring.

Figure 50
Install new oil sealing ring. Expander spring no longer used with new sealing rings.

Figure 53
Install turbine shaft bearing retaining ring.
Figure 54
Position turbine shaft gear on shaft. Install gear retaining ring. See note in Figure 33 and reassemble accordingly.

Figure 57
Tap pump drive shaft assembly into housing until rear bearing snap ring shoulders in bearing bore.

Figure 55
Install support washers and screws. Torque screws 57 to 63 ft. lbs. torque [77.3-85.4 N.m].

Figure 58
Position pump shaft rear bearing retaining washer in housing.

Figure 56
Position pump drive shaft and bearing assembly into converter housing.

Figure 59
Install retainer washer snap ring.
Align holes in impeller hub with holes in impeller. On 12" converters with 8 impeller hub screws, install screws and flat washers. Tighten 41 to 45 ft. lbs. torque [55.6-61.0 N.m]. Lockwire in pairs to prevent loosening. See view "R" on page 7. SEE FIGURE 64 FOR 13" CONVERTER WITH SPECIAL IMPELLER HUB SCREWS.

Clean impeller hub mounting surface and tapped holes with solvent. Dry thoroughly. Heating certain tapped holes are dry and clean. Install new "O" ring on impeller hub. Position impeller hub screw backing ring. (NOTE: Backing ring used on 13" converters only).

13" Converter with 12 special screws and backing ring.
Install (12) impeller hub special screws to approximately .06 inch [1.5] of seated position. With a calibrated torque wrench, tighten screws to 40-45 Lbs. Ft. [54.3-61.0 N.m] torque. NOTE: Assembly of impeller to impeller hub must be completed within a fifteen minute period from start of screw installation. The screws are prepared with coating which begins to harden after installation in the impeller hub holes. If not tightened to proper torque within the fifteen minute period, insufficient screw clamping tension will result. The special screw is to be used for one installation only. If the screw is removed for any reason it must be replaced.

The compound left in the hub holes must be removed with the proper tap and cleaned with solvent. Dry hole thoroughly and use a new screw for reinstallation.
Figure 65
Install new oil baffle oil seal as shown in assembly instruction sheet page 6. Position baffle and seal on impeller assembly use caution as not to damage oil seal.

Figure 68
Support turbine and hub assembly at the turbine hub and outer edge. Position impeller cover over turbine assembly, centering bearing bore with turbine hub. Install impeller cover bearing.

Figure 66
Position impeller hub gear on hub.

Figure 69
Install bearing spacer and retainer ring.

Figure 67
Install hub gear retaining ring.

Figure 70
Install new oil baffle "O" ring.
Figure 71
Position impeller and baffle assembly in housing. Align three (3) oil baffle bolt holes with bolt holes in housing.

Figure 72
Install three (3) oil baffle bolts and lockwashers. Tighten baffle bolts evenly to prevent damaging oil baffle "O" ring.

Figure 73
Install reaction member spacer with tang facing out.

Figure 74
Install reaction member.

Figure 75
Install reaction member retainer ring.

Figure 76
Position new impeller cover to impeller "O" ring.
Figure 77
Install impeller cover and turbine assembly on turbine shaft.

Figure 80
Install bearing cap on impeller cover, install bearing cap bolts and washers. Tighten to specifications.

Figure 78
Install impeller cover to impeller bolts. Tighten bolts to specifications.

Figure 81
Position pump drive sleeves on pump drive shafts.

Figure 79
Position new "O" ring on impeller cover bearing cap.

Figure 82
Install charging pump at the same pump opening it was removed from. Install stud nuts and washers, tighten to specifications.
OIL PRESSURE AND LUBRICATION SPECIFICATIONS
FOR C-320 SERIES CONVERTERS

Converter Out Pressure
Converter outlet oil temperature 180° - 200°F. [82.2° - 93.3°C]. Transmission in NEUTRAL.

Operating specifications:
25 P.S.I. [172.4 kPa] minimum pressure at 2000 RPM engine speed AND a maximum of 70 P.S.I. [482.6 kPa] outlet pressure with engine operating at no-load governed speed.

Converter outlet pressure equals the total pressure drop of the cooler, cooler lines and back pressure of the transmission lubrication systems.

Converter Lube Flow
Disconnect CONVERTER DRAIN BACK line at transmission with engine running at 2000 RPM and measure oil into a gallon container. Measure oil leakage for 15 seconds and multiply the volume of the oil by four to get gallons per minute leakage.

Leakage in Converter
Leakage in C-320 series not to exceed 2 gallons maximum.

LUBRICATION

RECOMMENDED LUBRICANTS FOR CLARK POWER SHIFTED TRANSMISSION AND TORQUE CONVERTERS

Prevaling Ambient Temperature

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>DL-12 Grade 80</th>
<th>DL-14 Grade 100</th>
<th>DL-20 Grade 110</th>
<th>DL-25 Grade 110</th>
<th>DL-30 Grade 110</th>
<th>DL-35 Grade 110</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>DL-40 Grade 110</th>
<th>DL-46 Grade 110</th>
<th>DL-55 Grade 110</th>
<th>DL-68 Grade 110</th>
<th>DL-80 Grade 110</th>
<th>DL-90 Grade 110</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>DL-120 Grade 110</th>
<th>DL-150 Grade 110</th>
<th>DL-190 Grade 110</th>
<th>DL-220 Grade 110</th>
<th>DL-260 Grade 110</th>
<th>DL-300 Grade 110</th>
</tr>
</thead>
</table>

Type of Oil
See Lube Chart.

Capacity
Consult Operator's Manual on applicable machine model for system capacity. Torque Converter, Transmission and allied hydraulic system must be considered as a whole to determine capacity.

Check Period
Check oil level DAILY with engine running at 500-600 RPM and oil at 180° - 200°F. [82.2° - 93.3°C]. Maintain oil level to FULL mark.

Normal + Drain Period
Every 1000 hours, change oil filter elements.
Every 2000 hours, drain and refill system as follows: Drain with oil at 150° - 200°F. [65.5° - 93.3°C].

NOTE: It is recommended that filter elements be changed after 50 and 100 hours of operation on new or rebuilt or repaired units.

(a) Drain transmission and remove sump screen. Clean screen thoroughly and replace, using new gaskets.
(b) Drain oil filters, remove and discard filter elements. Clean filter shells and install new elements.
(c) Refill transmission to LOW mark.
(d) Run engine at 500-600 RPM to prime converter and lines.
(e) Backfill level with engine running at 500-600 RPM and oil level to bring level to LOW mark. When oil temperature is hot (180-200°F. [82.2°-93.3°C]) make final oil level check. BRING OIL LEVEL TO FULL MARK.

*Normal drain periods and filter change intervals are for average environmental and duty-cycle conditions. Severe or sustained high operating temperatures or very dusty atmospheric conditions will cause accelerated deterioration and contamination. For extreme conditions judgment must be used to determine the required change intervals.
IRREGULARITIES IN PERFORMANCE
C320 Series Converters

Make all checks with converter outlet temperature at least 180° - 200° F. [82.3° - 93.3° C.]

TROUBLE

1. **Low converter OUT pressure**
 (Below 25 P.S.I. [172.4 kPa]
 with wrngine at 2000 RPM —
 NOT LOAD) Governed Speed
 (See Converter Pressure
 Specifications)

 PROBABLE CAUSE
 - Worn oil sealing and
 "O" rings
 - Worn oil pump.
 - Safety Valve stays open.

 REMEDY
 - A. Trouble is internal and will require a complete tear-down of the converter.
 - B. Replace.
 - C. Clean and check valve spring and valve.

2. **Suction line taking air.**

 PROBABLE CAUSE
 - Low oil level.
 - Suction line connections taking air.
 - Worn oil pump.

 REMEDY
 - D. Fill to proper level.
 - E. Check oil line connections and tighten securely.
 - F. Replace.

3. **High converter OUT pressure**
 (Above 70 P.S.I. [483.6 kPa]
 with engine at 2000 RPM —
 NO LOAD) Governed Speed
 (See Converter Pressure
 Specifications)

 PROBABLE CAUSE
 - Oil cooler or oil lines restricted.
 - Oil too heavy
 - Cold oil.

 REMEDY
 - G. Check oil cooler line and oil cooler for restrictions. Clean or replace.
 - H. Check oil weight. See oil recommendations.
 - I. Converter pressure in cold weather will vary. As soon as converter gets hot, pressure should drop.

4. **Over-heating**

 PROBABLE CAUSE
 - See items No. 1 & 2.
 - Oil cooler or oil cooler lines restricted causing safety valve to stay open.
 - Oil cooler too small.
 - Worn oil pump.
 - Converter drain line to transmission or oil sump not installed properly.

 REMEDY
 - J. Clean and check oil cooler and oil cooler lines. Replace if necessary.
 - K. Replace with larger cooler.
 - L. Replace oil pump.
 - M. Install at lowest drain opening in converter housing. Line must maintain constant gradual drop to oil sump for gravity drain.

5. **Noisy Converter.**

 PROBABLE CAUSE
 - Worn coupling gear.
 - Worn oil pump.
 - Damaged bearing.
 - Worn drive gears.

 REMEDY
 - N. Replace.
 - O. Replace.
 - P. A complete teardown will be necessary to determine this. Replace if necessary.
 - Q. Replace.

6. **Low clutch pressure.**
 (See pressure specifications)

 PROBABLE CAUSE
 - Transmission malfunction.
 - Worn oil pump.
 - Regulator valve stuck open.

 REMEDY
 - R. Close pressure line to transmission control valve. If clutch pressure returns to normal, trouble is in transmission.
 - S. Replace.
 - T. Clean and check valve for worn or dirty parts, replace if necessary.
IRREGULARITIES IN PERFORMANCE (Cont'd.)
C320 Series Converters

<table>
<thead>
<tr>
<th>TROUBLE</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. High clutch pressure, (See pressure specifications)</td>
<td>Regulator valve stuck closed.</td>
<td>U. See item T.</td>
</tr>
<tr>
<td></td>
<td>Engine stall speed below normal.</td>
<td>W. Tune engine. Check governor.</td>
</tr>
<tr>
<td></td>
<td>Low converter out pressure.</td>
<td>X. See item No. 1.</td>
</tr>
<tr>
<td></td>
<td>Air in the oil.</td>
<td>Y. See item No. 2.</td>
</tr>
<tr>
<td></td>
<td>Improper oil.</td>
<td>Z. See oil recommendations.</td>
</tr>
<tr>
<td>9. Oil in engine flywheel housing.</td>
<td>\text{"O" ring between impeller cover and impeller damaged.}</td>
<td>AA. Replace.</td>
</tr>
<tr>
<td></td>
<td>Oil baffle \text{"O" ring damaged.}</td>
<td>BB. Replace.</td>
</tr>
<tr>
<td></td>
<td>Oil baffle oil seal damaged.</td>
<td>CC. Replace.</td>
</tr>
</tbody>
</table>

GENERAL INFORMATION:
Use Clark 1533614 Oil Filter only.
Use Clark 215502 Oil Filter Element only.
Use minimum number of Pipe and Hose Fittings.
Gravity drain from Converter Sump to Transmission must be of minimum length and have no \text{"U"} bends to trap air or oil.
Cooler capacity for normal application; 30 per cent of net Engine Horsepower at Governed Speed.
Check oil level with engine idling and transmission in neutral.
CHANGE OIL FILTER ELEMENT EVERY 500 HOURS. DRAIN AND REFILL SYSTEM EVERY 1000 HOURS.

TRANSMISSION CLUTCH OIL PRESSURE P.S.I.
The C320 Converter will be equipped with one of three variations involving the clutch regulating valve. They are as follows:

1. Inlet cover for Converter oil only with clutch pressure valve in transmission control cover. 180 to 220 P.S.I. [1241,1 - 1516,8 kPa] pressure range. (See note).

2. Pressure regulator valve on Converter with a 240 to 280 P.S.I. [1654,8 - 1930,5 kPa] pressure range. (See Note).

3. Pressure regulator valve on Converter with a 180 to 220 P.S.I. [1241,1 - 1516,8 kPa] pressure range. (See Note).

NOTE: All pressure must be equal within 5 P.S.I. [34,5 kPa]. If clutch pressure varies in any one clutch more than 5 P.S.I. [34,5 kPa] repair clutch. All pressures must be taken with two clutches engaged.
16 SCREW RING GEAR INSTALLATION PROCEDURE
(Non-Asbestos Ring Gear)

1. Remove all burrs from flywheel mounting face and pilot bores. Clean the torque converter ring gear flywheel mounting surface and the ring gear screw tapped holes with solvent. Dry thoroughly, being certain ring gear screw holes are dry and clean.

2. Check engine flywheel and housing or housing adaptor for conformance to standard S.A.E. No. 3 — SAE J927 and J1033 tolerance specifications for pilot bores size, pilot bores eccentricities and mounting face deviations. Measure and record engine crankshaft end play.

3. Install torque converter ring gear as shown.

NOTE: Assembly of the ring gear must be completed within a fifteen minute period from start of screw installation. The screws are prepared with an epoxy coating which begins to harden after installation in the flywheel mounting holes. If not tightened to proper torque within the fifteen minute period insufficient screw clamping tension will result.

4. Install backing ring and sixteen (16) special screws to approximately .06 inch [1.5 mm] of seated position. It is permissible to use a power wrench for this installation phase. With a calibrated torque wrench tighten screws 30 to 33 pounds feet of torque (40.7 - 44.7 N.m).

To obtain maximum effectiveness of the special screw's locking feature, a minimum time period after screw installation of twelve (12) hours is suggested before engine start-up.

The special screw is to be used for ONE installation only. If the screw is removed for any reason it MUST BE REPLACED. It is recommended that the epoxy left in the flywheel hole be removed with the proper tap and cleaned with solvent. Dry hole thoroughly and use a NEW screw for re-installation.

5. Assemble torque converter to engine flywheel by sliding converter into position by hand before fastening housing attachment screws. This may require more than one trial to match the drive gear teeth. Pulling the converter into position with housing attachment bolts is not recommended.

6. Measure engine crankshaft end play after assembly of torque converter. This value must be within one thousandth (.001) of an inch [0.0254mm] of end play recorded (in Paragraph #2) before assembly of torque converter.

<table>
<thead>
<tr>
<th>802183 — 1.5 INCH [38.1] 16 SCREW RING GEAR KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 243765</td>
</tr>
<tr>
<td>16 236288</td>
</tr>
<tr>
<td>1 802184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>802392 — 1.5 INCH [38.1] 16 SCREW RING GEAR KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 243765</td>
</tr>
<tr>
<td>16 236288</td>
</tr>
<tr>
<td>1 243767</td>
</tr>
<tr>
<td>1 802184</td>
</tr>
</tbody>
</table>

243767 Backing Ring Not Included in 802183 Ring Gear Kit. Must be Ordered Separately.

CONVERTER INSTALLATION

1. Check end play on engine crankshaft & record! (End play to be as specified by engine manufacturer)

2. The use of guide pins in the engine flywheel housing will facilitate converter installation.

3. Assemble torque converter to engine flywheel by sliding converter into position by hand before fastening housing attachment screws. This may require more than one trial to match the drive gear teeth. Pulling the converter into position with housing attachment bolts is not recommended.

4. Measure engine crankshaft end play after assembly of torque converter. This value must be within one thousandth (.001) of an inch [0.0254 mm] of end play recorded (in Paragraph #1) before assembly of torque converter.
32 SCREW STABLE DRIVE CONNECTION NON-ASBESTOS CONVERTER DRIVE
RING GEAR INSTALLATION PROCEDURE

1. Remove all burrs from flywheel mounting face and pilot bores. Clean the torque converter ring gear flywheel mounting surface and the ring gear screw tapped holes with solvent. Dry thoroughly, being certain ring gear screw holes are dry and clean.

2. Check engine flywheel and housing or housing adaptor for conformance to standard S.A.E. No. 3 – SAE J927 and J1033 tolerance specifications for pilot bores size, pilot bores eccentricities and mounting face deviations. Measure and record engine crankshaft end play.

3. Install torque converter ring gear as shown.

 NOTE: Assembly of the ring gear must be completed within a fifteen minute period from start of screw installation. The screws are prepared with an epoxy coating which begins to harden after installation in the flywheel mounting holes. If not tightened to proper torque within the fifteen minute period insufficient screw clamping tension will result.

4. Install backing ring and thirty-two (32) special screws to approximately .06 inch [1.5 mm] of seated position. It is permissible to use a power wrench for this installation phase. With a calibrated torque wrench tighten screws 23 to 25 pounds feet of torque [31.2 - 33.8 N.m].

5. To obtain maximum effectiveness of the special screw's locking featured, a minimum time period after screw installation of twelve (12) hours is suggested before engine start-up.

 The special screw is to be used for ONE installation only. If the screw is removed for any reason is MUST BE REPLACED. It is recommended that the epoxy left in the flywheel hole be removed with the proper tap and cleaned with solvent. Dry hole thoroughly and use a NEW screw for re-installation.

 Assemble torque converter to engine flywheel by sliding converter into position by hand before fastening housing attachment screws. This may require more than one trial to match the drive gear teeth. Pulling the converter into position with housing attachment bolts is not recommended.

6. Measure engine crankshaft end play after assembly of torque converter. This value must be within one thousandth (.001) of an inch [0.0254 mm] of end play recorded (in Paragraph #2) before assembly of torque converter.

 802649 - 1.5 INCH [38.1] 32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 243970 Ring Gear Screw 1.5 Inch [38.1]
 1 802655 Installation Instruction Sheet

 802650 - 1.75 INCH [44.4] 32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 244903 Ring Gear Screw 1.75 Inch [44.4]
 1 802655 Installation Instruction Sheet

 802651 - 2.0 INCH [50.8] 32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 240318 Ring Gear Screw 2.0 Inch [50.8]
 1 802655 Installation Instruction Sheet

 802652 - 2.5 INCH [63.5] 32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 237153 Ring Gear Screw 2.5 Inch [63.5]
 1 802655 Installation Instruction Sheet

 802653 - 3.0 INCH [76.2] 32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 236938 Ring Gear Screw 3.0 Inch [76.2]
 1 802655 Installation Instruction Sheet

 802654 - M8-32 SCREW RING GEAR KIT
 1 249473 SDC Torque Converter Ring Gear
 32 420097 Ring Gear Screw [M8 x 1.25]
 1 802655 Installation Instruction Sheet

236397 Backing Ring Not Included in Ring Gear Kit. Must be Ordered Separately.

NOTE: The initial installation drive gear mounting kit includes a converter air breather. This breather is used on C & CL 270/C & CL 320 converters only and is not required for the HR & LHR 28000/Hr & LHR 32000 applications.

SEE PAGE 29 FOR INSTALLATION ILLUSTRATIONS
SERVICING MACHINE AFTER TORQUE CONVERTER OVERHAUL

The transmission, torque converter, and its allied hydraulic system are important links in the drive line between the engine and the wheels. The proper operation of either unit depends greatly on the condition and operation of the other; therefore, whenever repair or overhaul of one unit is performed, the balance of the system must be considered before the job can be considered completed.

After the overhauled or repaired transmission has been installed in the machine, the oil cooler, and connecting hydraulic system must be thoroughly cleaned. This can be accomplished in several manners and a degree of judgment must be exercised as to the method employed.

The following are considered the minimum steps to be taken:

1. Drain entire system thoroughly.

2. Disconnect and clean all hydraulic lines. Where feasible, hydraulic lines should be removed from machine for cleaning.

3. Replace oil filter elements, cleaning out filter cases thoroughly.

4. The oil cooler must be thoroughly cleaned. The cooler should be “back flushed” with oil and compressed air until all foreign material has been removed. Flushing in direction of normal oil flow will not adequately clean the cooler. If necessary, cooler assembly should be removed from machine for cleaning, using oil, compressed air and steam cleaner for that purpose. **DO NOT** use flushing compounds for cleaning purposes.

5. On remote mounted torque converters remove drain plug from torque converter and inspect interior of converter housing, gears, etc. If presence of considerable foreign material is noted, it will be necessary that converter be removed, disassembled and cleaned thoroughly. It is realized this entails extra labor; however, such labor is a minor cost compared to cost of difficulties which can result from presence of such foreign material in the system.

6. Reassemble all components and use only type oil recommended in lubrication section. Fill transmission through filler opening until fluid comes up to LOW mark on transmission dipstick. **NOTE:** If the dipstick is not accessible oil level check plugs are provided.

 Remove LOWER check plug, fill until oil runs from LOWER oil hole. Replace filler and level plug.

 Run engine two minutes at 500-600 RPM to prime torque converter and hydraulic lines. Recheck level of fluid in transmission with engine running at idle (500-600 RPM).

 Add quantity necessary to bring fluid level to LOW mark on dipstick or runs freely from LOWER oil level check plug hole. Install oil level plug or dipstick. Recheck with hot oil (180-200°F) [82, 2.93, 3°C].

 Bring oil level to FULL mark on dipstick or runs freely from UPPER oil level plug.

7. Recheck all drain plugs, lines, connections, etc., for leaks and tighten where necessary.

CONVERTER CHARGE PUMP REPLACEMENT AND PRIMING PROCEDURE

1. The cause for pump failure must be found and corrected before a replacement pump is installed. Check all of the hoses, tubes, “O” rings, adaptors and split flanges.

2. Replace any collapsed or damaged hoses, damaged split flange “O” rings, tube “O” rings and adaptors.

3. After all checks have been made and corrections completed install the pump.

4. See filling instructions in paragraph 6 above.

5. Start the engine. Run the engine at low idle for two minutes, watch the clutch pressure gage and listen for cavitation of the pump.

6. If the pressure does not come up, check the oil level and bleed off air from system as follows.

7. To bleed off the air from the system, loosen the pressure gage line at the pressure regulating valve or loosen the pressure hose at the oil filter or pressure regulating valve. Crank the engine over until the air is displaced with oil. **DO NOT** START THE ENGINE.

8. If bleeding the lines does not correct the problem it may become necessary to prime the pump. Disconnect the suction hose or pressure hose, whichever is higher, and fill the port with transmission oil, reconnect the hose and tighten.

9. Start the engine and check pressure.

10. Recheck oil level with hot oil (180-200°F) with engine at idle. Add oil as necessary to bring oil level to full mark.
SPEED SENSOR INSTALLATION

Stake 3 places approx. equally spaced.

After curing of Loctite, speed sensor bushing must be secure with 40 Ft. Lb. [54.2 N-m] torque.

VIEW "T" (Pump Drive Gear Sensor) Inspect at assembly. Dim. "U" from gear tooth.

REAR VIEW OF CONVERTER

VIEW "S" (Output Drive Gear Sensor) Inspect at assembly. Dim. "W" from gear tooth.

Assemble Speed Sensor Bushing in housing to specified dimension "U" or "W" with Loctite 262 and stake (3) three places. See Pump Drive and Output Gear Charts for dimensions.

PUMP DRIVE RATIO

<table>
<thead>
<tr>
<th>RATIO</th>
<th>DRIVE GEAR NO. OF TEETH</th>
<th>DRIVEN GEAR NO. OF TEETH</th>
<th>SPEED SENSOR BUSHING DEPTH "U" PER VIEW "T"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.135</td>
<td>37</td>
<td>42</td>
<td>1.060 ± .007 [25.9 ± .17]</td>
</tr>
<tr>
<td>.951</td>
<td>41</td>
<td>39</td>
<td>1.060 ± .007 [26.9 ± .17]</td>
</tr>
</tbody>
</table>

OUTPUT GEAR RATIO

<table>
<thead>
<tr>
<th>RATIO</th>
<th>TURBINE SHAFT & GEAR ASS'Y NO. OF TEETH</th>
<th>OUTPUT GEAR NO. OF TEETH</th>
<th>SPEED SENSOR BUSHING DEPTH "W" PER VIEW "S"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.333</td>
<td>21</td>
<td>28</td>
<td>1.060 ± .007 [26.9 ± .17]</td>
</tr>
<tr>
<td>1.130</td>
<td>23</td>
<td>26</td>
<td>1.060 ± .007 [26.9 ± .17]</td>
</tr>
<tr>
<td>1.042</td>
<td>24</td>
<td>25</td>
<td>1.390 ± .007 [35.3 ± .17]</td>
</tr>
<tr>
<td>.960</td>
<td>25</td>
<td>24</td>
<td>1.390 ± .007 [35.3 ± .17]</td>
</tr>
<tr>
<td>.885</td>
<td>26</td>
<td>23</td>
<td>1.390 ± .007 [35.3 ± .17]</td>
</tr>
</tbody>
</table>
28000/32000 SERIES TRANSMISSION AND C-270/C-320 CONVERTER DRIVE PLATE INSTALLATION INSTRUCTIONS

Proper Identification by Bolt Circle Diameter.

Measure the "A" dimension (Bolt Circle diameter) and order Drive Plate Kit listed below.

"A" Dimension (Bolt Circle Diameter)
- 13.125" [333.375 mm] Diameter
 Kit No. 802335
- 13.50" [342,900 mm] Diameter
 Kit No. 802517
- 17.00" [431,800 mm] Diameter
 Kit No. 802454

NOTE: Assembly of flexplates must be completed within a 15 minute period from start of screw installation. If the screw is removed for any reason it must be replaced. The adhesive left in the tapped hole must be removed with the proper tap and cleaned with solvent. Dry the hole thoroughly and use a new screw for reinstallation.

Each kit will include the following parts:
- 4 Intermediate Drive Plates
- 1 Drive Plate and Weld Nut Assembly
- 1 Backing Ring
- 10 Drive Plate Mounting Screws
- 10 Drive Plate Washer
- 1 Instruction Sheet

"A" Dimension (Bolt Circle Diameter)
- 13.125" [333.375 mm] Diameter
 Kit No. 802521
- 13.50" [342,900 mm] Diameter
 Kit No. 802568
- 17.00" [431,800 mm] Diameter
 Kit No. 802566

Each kit will include the following parts:
- 5 Intermediate Drive Plates
- 1 Backing Ring
- 10 Drive Plate Mounting Screws
- 10 Drive Plate Washer
- 1 Instruction Sheet

TO FACILITATE ASSEMBLY, ALIGN SMALL HOLES IN DRIVE PLATES-SEE ILLUSTRATION ABOVE.

Position drive plate and weld nut assembly on impeller cover with weld nuts toward cover. Align intermediate drive plate and backing ring with holes in impeller cover. NOTE: Two dimples 180 degrees apart in backing ring must be out (toward engine flywheel). Install capscrews and washers. Tighten 33 to 36 ft. lbs. torque [45-49 N.m]

SEE PAGE 33 FOR TRANSMISSION TO ENGINE INSTALLATION PROCEDURE
TRANSMISSION TO ENGINE INSTALLATION PROCEDURE

1. Remove all burrs from flywheel mounting face and nose pilot bore. Clean drive plate surface with solvent.

2. Check engine flywheel and housing for conformance to standard S.A.E. #3 - S.A.E. J-927 tolerance specifications for pilot bore size, pilot bore runout and mounting face flatness. Measure and record engine crankshaft end play.

3. Install two 3.50 [88,90 mm] long transmission to flywheel housing guide studs in the engine flywheel housing as shown. Rotate the engine flywheel to align a drive plate mounting screw hole with the flywheel housing access hole.

4. Install a 4.00 [101,60 mm] long drive plate locating stud .3750-24 fine thread in a drive plate nut. Align the locating stud in the drive plate with the flywheel drive plate mounting screw hole positioned in step No. 3.

5. Locate transmission on flywheel housing aligning drive plate to flywheel and transmission to flywheel housing.

 Install transmission to flywheel housing screws. Tighten screws to specified torque. Remove transmission to engine guide studs. Install remaining screws and tighten to specified torque.

6. Remove drive plate locating stud.

7. Install drive plate attaching screw and washer. Snug screw but do not tighten. Some engine flywheel housings have a hole located on the flywheel housing circumference in line with the drive plate screw access hole. A screwdriver or pry bar used to hold the drive plate against the flywheel will facilitate installation of the drive plate screws. Rotate the engine flywheel and install the remaining seven (7) flywheel to drive plate attaching screws. Snug screws but do not tighten. After all eight (8) screws are installed torque each one 25 to 30 ft. lbs. torque [33,9 - 40,6 N.m.]. This will require torquing each screw and rotating the engine flywheel until the full amount of eight (8) screws have been tightened.

8. Measure engine crankshaft end play after transmission has been completely installed on engine flywheel. This value must be within .001 [0,025 mm] of the end play recorded in step No. 2.
DISASSEMBLY OF LOCK-UP COVER

Figure 1
Remove end plate to lock-up cover bolts

Figure 2
Remove end plate and clutch disc.

Figure 3
Remove piston and outer drive disc.

REASSEMBLY OF LOCK-UP COVER

Figure 4
Position new oil sealing ring on input hub. Grease ring lightly to facilitate reassembly.

Figure 5
Install new oil sealing ring on outer diameter of actuating piston and grease lightly. Position piston over input hub, use caution as not to damage oil sealing rings. Locate outer drive disc teeth with teeth on the outer diameter of the piston.

Figure 6
Lubricate clutch disc lightly and position in cover. Align holes of end plate with holes in driving disc and lock-up cover. Install bolts and tighten 30 to 35 lbs. ft. torque [40.7–27.4 N·m.]